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1. Introduction

The main goal of this paper is to prove the following three results which are essentially
equivalent to each other. Recall that a quasisimple group is one that is perfect and
simple modulo its center. Note that the last theorem is about all finite groups.

Theorem A. Every finite quasisimple group G has a profinite presentation with 2

generators and at most 18 relations.

Theorem B. If G is a finite quasisimple group, F a field and M an F G-module, then
dim H 2.G; M/ � .17:5/ dim M .

Theorem C. If G is a finite group, F a field and M an irreducible faithful F G-module,
then dim H 2.G; M/ � .18:5/ dim M .

All three theorems depend on the classification of finite simple groups. One could
prove Theorems A and B independently of the classification for the known simple
groups.

We abuse notation somewhat and say that an F G-module is faithful if G acts
faithfully on M . We call M a trivial G-module if it is 1-dimensional and G acts
trivially on M .

In [21], the predecessor of this article, we showed that every finite non-abelian
simple group, with possible exception of the family 2G2.32kC1/, has a bounded short
presentation (with at most 1000 relations – short being defined in terms of the sums
of the lengths of the relations). We deduced results similar to the first two theorems
above but with larger constants. In [22], we show that every finite simple group (with
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possible exception of 2G2.32kC1/) has a presentation with 2 generators and at most
100 relations.

In many cases, the results proved here and in [22] are much better, e.g., for An

and Sn, we produce presentations with 3 generators and 7 relations [22]. Here we
give still better results for these groups in the profinite case – there are profinite
presentations with 2 generators and 4 relations.

We believe that with more effort (and some additional ideas) the constants in these
three theorems may be dropped to 4, 2 and 1=2 respectively.

One of the methods used in this paper is possibly of as much interest as the results
themselves. We show how to combine cohomological and profinite presentations
arguments – by going back and forth between the two topics to deduce results on
both. The bridge between the two subjects is a formula given in [34] which states:
If G is a finite group and Or.G/ is the minimal number of relations in a profinite
presentation of G, then

Or.G/ D sup
p

sup
M

��
dim H 2.G; M/ � dim H 1.G; M/

dim M

�
C d.G/ � �M

�
; .1:1/

where d.G/ is the minimum number of generators for G, p runs over all primes, M

runs over all irreducible FpG-modules, and �M D 0 if M is the trivial module and 1
if not. By [19], if G is a quasisimple finite group, then for every FpG module M ,

dim H 1.G; M/ � .1=2/ dim M: .1:2/

Set

h0
p.G/ D max

M

dim H 2.G; M/

dim M
; and h0.G/ D max

p
h0

p.G/; .1:3/

where M ranges over nontrivial irreducible FpG-modules. If G is a finite quasisimple
group, then d.G/ � 2 [4, Theorem B] and dim H 2.G; Fp/ � 2 [16, pp. 312–313])
and so

maxf2; dh0.G/ C 1=2eg � Or.G/ � maxf4; dh0.G/ C 1eg: .1:4/

This explains how Theorems A and B are related and are essentially equivalent. We
see in Section 5 that Theorem B implies Theorem C. On the other hand, the bound
for Schur multipliers for finite simple groups and Theorem C implies a version of
Theorem B.

We also define

h.G/ D max
M;p

dim H 2.G; M/

dim M
; .1:5/

where M ranges over all FpG-modules.
We now give an outline of the paper. After some preparation in Sections 3, 4,

and 5, we show in Sections 6, 7 and 9, respectively, that:
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Theorem D. For every n, h.An/ < 3 and h.Sn/ < 3 and Or.An/ and Or.Sn/ � 4.

Theorem E. For every prime power q and 2 � n � 4; h.SL.n; q// � 2.

Theorem F. maxfh.G/; Or.G/g � 6 for each rank 2 quasisimple finite group G of Lie
type.

In fact, the results are more precise – see Sections 6, 7 and 9 for details.
From (1.4) we see that Theorems D, E and F imply that all the groups in those

theorems have profinite presentations with a small number of relations. In Sections 8
and 10, we repeat our “gluing” arguments from [21, §6.2] to show how to deduce from
these cases the existence of bounded (profinite) presentations for all the quasisimple
finite groups of Lie type. In fact, this time the proof is easier and the result is stronger
as we do not insist of having a short presentation as we did in [21]; we count only the
number of relations but not their length. Moreover, Lemma 3.15 gives an interesting
method for saving relations which seems to be new (the analog is unlikely to work
for discrete presentations). In Section 11, we discuss the sporadic simple groups. If
a Sylow p-subgroup has order at most pm, one can use the main result of [30] to
deduce the bound h0

p.G/ � 2m. In many sporadic cases, discrete presentations for
the groups are known [51] and the results follow. There are not too many additional
cases to consider.

This completes the outline of the proof of TheoremA.Applying (1.4) in the reverse
direction we deduce Theorem B (at least for Fp – however, changing the base field
does not change the ratio dim H 2.G; M/= dim M – see Lemma 3.2 and the discussion
following it). In Section 5, we prove Theorem 5.3 which shows that Theorem B implies
Theorem C.

Holt [30] conjectured Theorem C for some constant C . He proved that

dim H 2.G; M/ � 2ep.G/ dim M;

for M an irreducible faithful G-module, where pep.G/ is the order of a Sylow p-sub-
group of G. Holt also reduced his proof to simple groups. However, he was proving
a weaker result than we are aiming for, and his reduction methods are not sufficient
for our purposes.

As we have already noted in (1.2), the analog of Theorem B for H 1 holds with
constant 1=2. It is relatively easy to see that this implies that the analog of Theorem C
for H 1 with constant 1=2 is valid. We give examples to show that the situation for
higher cohomology groups is different (see Section 12). In particular, the following
holds:

Theorem G. Let F be an algebraically closed field of characteristic p > 0 and let k

be a positive integer.
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There exists a sequence of finite groups Gi ; i 2 N and irreducible faithful F Gi

modules Mi such that:

(1) limi!1 dim Mi D 1,

(2) dim H k.Gi ; Mi / � e.dim Mi /
k�1 for some constant e D e.k; p/ > 0, and

(3) if k � 3, then lim
i!1

dim H k.Gi ; Mi /

dim Mi

D 1:

Thus the analog of Theorem C for H k with k � 3 does not hold for any constant –
although it is still possible that an analog of Theorem B holds. This also shows that
dim H 2.G; M/ can be arbitrarily large for faithful absolutely irreducible modules –
it is not known whether this is possible for H 1.G; M/ under the same hypotheses.
We suspect that there is an upper bound for dim H k.G; M/ of the same form as the
lower bound in (2) above.

Finally, in Section 13 we give some applications of the results in [21] and the
current paper for general finite groups, as well as some questions. An especially
intriguing question is related to the fact that Or.G/ � r.G/, the minimal number of
relations required in any presentation of the group G. As far as we know, it is still not
known whether for some finite group G, we can have Or.G/ < r.G/.

There is a long history of studying presentations of groups and, in particular, the
number and length of relations required for finite groups. Presentations of groups
also rise in connection with various problems about counting isomorphism classes of
groups. Much of the work done recently on these questions (e.g., [21], [31], [33],
and [36, Chapter 2]) was motivated by the paper [39] of Avinoam Mann. We dedicate
this paper to him on the occasion of his retirement.

2. General strategy and notation

We outline a method in order to obtain bounds of the form dim H 2.G; M/ � C dim M

for some constant C . Here G is a finite group and M is an F G-module with F a field
of characteristic p > 0 (in characteristic zero, H 2.G; M/ D 0 – see Corollary 3.12).
There are several techniques that we use to reduce the problem to smaller groups.

The first is to use the long exact sequence for cohomology (Lemma 3.3) to reduce
to the case that M is irreducible. Then we use Lemma 3.2, which allows us to assume
that we are over an algebraically closed field and that M is absolutely irreducible
(occasionally, it is convenient to use this in the reverse direction and assume that
M is finite and over Fp – see the discussion after Lemma 3.2). We also use the
standard fact that H 2.G; M/ embeds in H 2.H; M/ whenever H � G contains a
Sylow p-subgroup of G [17, p. 91]. Typically, M will no longer be irreducible as an
FH -module, but we can reduce to that case as above.

We use these reductions often without comment.
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We use our results on low rank finite groups of Lie type and the alternating groups
to provide profinite presentations for the larger rank finite groups of Lie type, and so
also bounds for H 2 via (1.4).

We use standard terminology for finite groups. In particular, F.G/ is the Fitting
subgroup and Op.G/ is the maximal normal p-subgroup of G. A component is a
subnormal quasisimple subgroup of G. The (central) product of all components of
G is denoted by E.G/. Note that E.G/ and F.G/ commute. The generalized Fitting
subgroup is F�.G/ WD E.G/F.G/. We let Ct denote the cyclic group of order t .
See [2] for a general reference for finite group theory. We also use [16] as a general
reference for properties of the finite simple groups – the Schur multipliers and outer
automorphism groups of all the simple groups are given there.

If M is an H -module, M H is the set of H fixed points on M and ŒH; M� is the
submodule generated by fhv � v j h 2 H; v 2 M g. Note that ŒH; M� is the smallest
submodule L of M such that H acts trivially on M=L. If V is a module for the
subgroup H of G, V G

H is the induced module.

3. Preliminaries on cohomology

Most of the results in this section are well known. See [6], [10], [37] and [17] for
standard facts about group cohomology.

We first state a result that is an easy corollary of Wedderburn’s theorem on finite
division rings. We give a somewhat different proof based on Lang’s theorem (of
course, Wedderburn’s theorem is a special case of Lang’s Theorem). See also a result
of Brauer [15, 19.3] that is slightly weaker.

Lemma 3.1. Let K be a .possibly infinite/ field of characteristic p > 0, and let G

be a finite group. Let V be an irreducible KG-module.

(1) There is a finite subfield F of K and an irreducible F G-module W with V Š
W ˝F K.

(2) EndKG.V / is a field.

Proof. Clearly, (1) implies (2) by Wedderburn’s Theorem and Schur’s Lemma. One
can give a more direct proof. Let F be a finite subfield of K. Then B WD KG Š
F G ˝F K. Thus, B=Rad.B/ is a homomorphic image of .F G=Rad.F G// ˝F K.
By Wedderburn’s Theorem, F G=Rad.F G/ is a direct product of matrix rings over
fields, and so the same is true for B=Rad.B/. Thus, B=AnnB.V / Š Ms.K 0/ for
some extension field K 0=K. Since K 0 Š EndG.V /, (2) follows.

We now prove (1). Set n D dim V . Let � W G ! GL.n; K/ be the representation
determined by V . Let F be the subfield of K generated by the traces of elements of
�.g/ 2 G acting on V . Let q denote the cardinality of the finite field F .
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Let � denote the qth power map. Note that F is the fixed field of � . Then �

induces an endomorphisms of KG and so a twisted version of V , which we denote
by V 0. Let L denote the algebraic closure of K. Since the character of V is defined
over F , it follows that the characters of V and V 0 are equal (and indeed, similarly for
the Brauer characters). This implies that V 0 Š V as KG-modules (or equivalently as
LG-modules). Thus, there exist U 2 GL.n; K/ with U�.g/U �1 D �.�.g// for all
g 2 G. By Lang’s theorem, U D X��X for some invertible matrix X (over L). This
implies that �0.g/ WD X�.g/X�1 D �.X�.g/X�1/ defines a representation from G

into GL.n; F /. Let U be the corresponding module. Clearly, V Š U ˝F K.

We state another result about extensions of scalars.

Lemma 3.2. Let G be a finite group and F a field. Let M be an F G-module.

(1) If K is an extension field of F , then H 2.G; M/ ˝F K and H 2.G; M ˝F K/

are naturally isomorphic, and in particular have the same dimension.

(2) If M is irreducible and F has positive characteristic, then E WD EndG.M/

is a field, M is an absolutely irreducible EG-module and dimF H 2.G; M/ D
ŒE W F � dimE H 2.G; M/.

Proof. These results are well known. See [10, 0.8] for the first statement. By
Lemma 3.1, E is a field. Clearly, M is an absolutely irreducible EG-module, and
so H 2.G; M/ is also a vector space over E. The last equality holds for any finite
dimensional vector space over E.

The previous result allows us to change fields in either direction. If F is alge-
braically closed of characteristic p > 0 and M is an irreducible F G-module, then M

is defined over some finite field E – i.e. there is an absolutely irreducible EG-module
V such that M D V ˝E F and we can compute the relevant ratios of dimensions
over either field. Similarly, if M is an irreducible F G-module with F a finite field,
then we can view M an EG-module, where E D EndG.V /, and so assume that M

is absolutely irreducible. Alternatively, we can view M as an FpG-module.
See [10, III.6.1 and III.6.2] for the next two results.

Lemma 3.3. Let G be a group and 0 ! X ! Y ! Z ! 0 a short exact sequence
of G-modules. This induces an exact sequence:

0 ! H 0.G; X/ ! H 0.G; Y / ! H 0.G; Z/ ! H 1.G; X/ ! � � �
! H j �1.G; Z/ ! H j .G; X/ ! H j .G; Y / ! H j .G; Z/ ! � � �

In particular, dim H j .G; Y / � dim H j .G; X/ C dim H j .G; Z/ for any integer
j � 0.
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Lemma 3.4 (Shapiro’s Lemma). Let G be a finite group and H a subgroup of G. Let
V be an FH -module. Then H j .H; V / Š H j .G; V G

H / for any integer j � 0.

Lemma 3.5. Let G have a cyclic Sylow p-subgroup. Let F be a field of characteris-
tic p. If M is an indecomposable F G-module and j is a non-negative integer, then
dim H j .G; M/ � 1.

Proof. By a result of D. G. Higman (see [8, 3.6.4]), M is a direct summand of
W G

P , where P is a Sylow p-subgroup of G and W is an FP -module. Since M

is indecomposable, we may assume that W is an indecomposable P -module. By
Shapiro’s Lemma (Lemma 3.4), H j .G; M/ is a summand of H j .P; W /. So it
suffices to assume that G D P is a cyclic p-group and W is an indecomposable
P -module (which is equivalent to saying W is a cyclic FP -module).

In this case we show that dim H j .P; W / D 1 unless W is free (in which case the
dimension is 0) by induction on j . If j D 0, this is clear. So assume that W is not
free. Since W is self cyclic and self dual, it embeds in a rank one free module V .
Then H i .P; V / D 0 and by Lemma 3.3, H i .P; W / Š H i�1.P; V=W / and so is
1-dimensional (since V=W is nonzero and cyclic).

The next result is standard – cf. [17, p. 91].

Lemma 3.6. If H contains a Sylow p-subgroup of G, then the restriction map
H i .G; M/ ! H i .H; M/ is an injection.

The next result is an easy consequence of the Hochschild–Serre spectral sequence
[37, p. 337]. See also [29].

Lemma 3.7. Let N be a normal subgroup of G, F a field and M an F G-module.
Then dim H q.G; M/ � P

iCj Dq dim H i .G=N; H j .N; M//.

We single out the previous lemma for the cases q D 1; 2. See [37, pp. 354–355]
or [30, Lemma 2.1].

Lemma 3.8. Let N be a normal subgroup of H and let M be an FH -module. Then

.1/ dim H 1.H; M/ � dim H 1.H=N; M N / C dim H 1.N; M/H ; and

.2/ dim H 2.H; M/ � dim H 2.H=N; M N / C dim H 2.N; M/H

C dim H 1.H=N; H 1.N; M//:

We shall use the following well-known statements without comment.

Lemma 3.9. If G is perfect, then H 1.G; Fp/ D 0 and dim H 2.G; Fp/ is the p-rank
of the Schur multiplier of G.
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We also use the following consequence of the Künneth formula.

Lemma 3.10. Let F be a field and let H D H1�� � ��Ht with the Hi finite groups. Let
Mi be an irreducible FHi -module for each i and set M D Nt

iD1 Mi , an irreducible
FH -module. Then

(1) H r.H; M/ D L
.ei / H e1.H1; M1/˝� � �˝H et .Ht ; Mt /, where the sum is over

all .ei / with the ei non-negative integers and
P

ei D r .

(2) If Hi acts nontrivially on Mi for each i , then H r.H; M/ D 0 for r < t and
dim H t .H; M/ D Q

dim H 1.Hi ; Mi /.

(3) If each Hi is quasisimple and each Mi is nontrivial, then dim H t .H; M/ �
dim M=2t .

(4) If the Hj are perfect for j > 1, M1 is nontrivial and Mj is trivial for j > 1,
then H 2.H; M/ Š H 2.H1; M1/.

Proof. The first statement is just the Künneth formula as given in [8, 3.5.6], and the
second statement follows immediately since H 0.Hi ; Mi / D 0. If Hi is quasisim-
ple, then (2) and (1.2) imply (3). Finally (4) follows from (1) and the fact that, by
Lemma 3.9, H 1.Hj ; Mj / D 0 for j > 1.

Note that there are quite a number of terms involved in H r.H; M/ in the lemma
above. Fortunately, when r is relatively small, most terms will be 0.

See [6, 35.6] for the next result.

Lemma 3.11. Assume that N is normal in H and H r�1.N; M/ D 0. Then there is
an exact sequence

0 ! H r.H=N; M N / ! H r.H; M/ ! H r.N; M/H :

We single out a special case of the previous lemma.

Corollary 3.12. Let H be a finite group with a normal subgroup N . Let M be an
FH -module.

(1) If M N DH j �1.N; M/ D 0, then the restriction map H j .H; M/ ! H j .N; M/

is injective.

(2) If N has order that is not a multiple of the characteristic of M and M N D 0,
then H j .H; M/ D 0 for all j .

(3) If N has order that is not a multiple of the characteristic of M and M N D M ,
then H j .H=N; M/ Š H j .H; M/ for all j .
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Proof. (1) is an immediate consequence of the previous lemma. Under the assump-
tions of (2), M is a projective FN -module and so H j .N; M/ D 0 for all j > 0 and
H 0.N; M/ D 0 by hypothesis. Thus (2) follows by induction on j and (1). Note
that (3) is a special case of Lemma 3.11.

The previous corollary in particular illustrates the well-known result that all higher
cohomology groups for finite groups vanish in characteristic 0. So we will always
assume our fields have positive characteristic in what follows.

It is also convenient to mention a special case of Lemma 3.11 for H 1.

Lemma 3.13. Let G be a finite group with p a prime. Let N be a normal p-subgroup
of G and V an FpG-module with N acting trivially on V . Then dim H 1.G; V / �
dim H 1.G=N; V / C dim HomG.N; V /.

Lemma 3.14. Let A and B be quasisimple groups with trivial Schur multipliers, and
let G D A � B . Then d.G/ D 2 and Or.G/ D maxfOr.A/; Or.B/g.

Proof. Since d.A/ D d.B/ D 2, it follows that d.G/ D 2 unless possibly A Š B .
In that case d.G/ D 2 follows from the fact that the set of generating pairs of a finite
simple group are not a single orbit under the automorphism group (e.g., use the main
result of [20]). The last statement now follows by Lemma 3.10 and (1.1).

Since (1.1) does not give an explicit presentation, we cannot give one in the
previous result. It would be interesting to do so.

The next result is an interesting way of giving profinite presentations with fewer
relations than one might expect by giving presentations with more generators than
the minimum required. Recall that a profinite presentation for a finite group G is a
free profinite group F and a finite subset U of F such that if R is the closed normal
subgroup generated by U , G Š F=R.

We show in the next result that if G has a profinite presentation with d.G/ C c

generations and e relations, then it has a profinite presentation with d.G/ generators
and e � c relations. Often, we will give profinite presentations with more than the
minimum number of generators required and so we deduce the existence of another
profinite presentation with d.G/ generators and fewer relations. We do not know
how to make this explicit and if this is true for discrete presentations. Indeed, the best
result we know is that if G has a (discrete) presentation with r relations, then it is
has a (discrete) presentation with d.G/ generators and r C d.G/ relations (see [21,
Lemma 2.1]).

If M is an FpG-module, let dG.M/ be the minimum size of a generating set
for M as an FpG-module. The key result is in [34, Theorem 0.2], which asserts that
if G D F=R is a finite group, F is a free profinite group and R is a closed normal
subgroup of F , then the minimal number of elements needed to generate R as a closed
normal subgroup of F is equal to maxpfdG.M.p/g, where M.p/ is the G-module
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R=ŒR; R�Rp and p ranges over all primes. Moreover, by [17, 2.4] the structure of
M.p/ depends only on the rank of F .

Lemma 3.15. Let G be a finite group. Consider a profinite presentation G D F=R

where F is the free profinite group on d.G/ C c generators. Let e to be the minimal
number of elements required to generate R as a closed normal subgroup of F . Then
Or.G/ D e�c. In particular, the minimal number of relations occurs when the number
of generators is minimal, and only in that case.

Proof. Set M D R=ŒR; R� and M.p/ D M=pM for p a prime. So M is the relation
module for G in this presentation and M.p/ is an FpG-module.

As noted above, R is normally generated (as a closed subgroup) in F by e elements,
where e D maxpfdG.M.p/g. Also as noted above the structure of M.p/ only depends
on the number of generators for F and not on the particular presentation. So we may
assume that all but d.G/ generators in the presentation are sent to 1, whence we see
that M.p/ D N.p/ ˚ Xp where Xp is a free FpG-module of rank c and N.p/ is the
p-quotient of the relation module for a minimal presentation.

Now the first statement follows from the elementary fact that, if an FpG-module
Y can be generated by s elements but no fewer, then the FpG-module Y ˚ FpG is
generated by s C 1 elements but no fewer. Indeed, this holds for any finite dimen-
sional algebra A over a field – for by Nakayama’s Lemma, we may assume that A

is semisimple and so reduce to the case that A is a simple algebra, where the result
is clear.

The last statement is now an immediate consequence.

Lemma 3.16. Let G be a finite group with a normal abelian p-subgroup L. Let V

be an irreducible FpG-module.

(1) There is an exact sequence of G-modules,

0 ! ExtZ.L; V / ! H 2.L; V / ! ^2.L�/ ˝ V ! 0:

(2) dim H 2.L; V /G � dim..L=pL/� ˝ V /G C dimF .^2.L=pL/� ˝ V /G .

(3) If G D L, then dim H 2.G; Fp/ D d.d C 1/=2 where d D d.G/.

Proof. Since G acts irreducibly on V , it follows that L acts trivially on V .
It is well known (cf. [10, p. 127] or [7]) that when L is abelian and acts triv-

ially on V , there is a (split) short exact sequence as in (1) in the category of abelian
groups. Here ExtZ.L; V / is the subspace of H 2.L; V / corresponding to abelian
extensions of L by V . The natural maps are G-equivariant, giving (1). Note
that ExtZ.L; V / Š Hom.L=pL; V / Š .L=pL/� ˝ V even as G-modules. Also,
^2.L�/ ˝ V Š ^2.L=pL/� ˝ V since V is elementary abelian.

Taking G-fixed points gives (2), and taking G D L and V D Fp gives (3).
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Lemma 3.17. Let T be a finite cyclic group of order .q � 1/=d acting faithfully on
the irreducible FpT -module X of order q D pe . Set Y D ^2.X/. Assume either
that d < p or that both d D 3 and q > 4. Then

(1) Y is multiplicity free as a T -module; and

(2) X is not isomorphic to a submodule of Y .

Proof. Let x 2 T be a generator. Thus, x acts on V with eigenvalue � 2 Fq of order
.q � 1/=d . It is straightforward to see that Y ˝Fp

Fq is a direct sum of submodules

on which x acts via �.pi Cpj / where 1 � i < j < e. These submodules are all
nonisomorphic (if not, then d.pi C pj / � d.pi 0 C pj 0

/ modulo pe � 1 for some
distinct pairs fi; j g and fi 0; j 0g) and similarly are not isomorphic to X .

Lemma 3.18. Let G be a finite group. Let V be an irreducible FpG-module of
dimension e. Then ^2.V / can be generated by e � 1 elements as an FpG-module. In
particular, dim HomG.^2.V /; W / � .e � 1/ dim W for any FpG-module W .

Proof. Choose a basis v D v1; : : : ; ve for V . It is clear that v1 ^ vj ; 2 � j � e,
is a generating set for ^2.V / as a G-module, which proves the first statement. The
second statement is a trivial consequence of the first.

We will use the following elementary result to bound the number of trivial com-
position factors in a module.

Lemma 3.19. Let G be a finite group and F a field of characteristic p. Let M be an
F G-module and let J be a subgroup of G.

(1) If M G D 0 and G can be generated by 2 conjugates of J , then dim M J �
.1=2/ dim M .

(2) If jJ j is a not a multiple of p, then the number of trivial F G composition factors
is at most dim M J .

Proof. If G D hJ; Ki for some conjugate K of J , then M J \ M K D M G D 0,
whence (1) holds. In (2), since J has order coprime to the characteristic of F ,
M D M J ˚ V where J has no trivial composition factors on V . Thus, the number
of J -trivial composition factors is at most dim M J and so this is also an upper bound
for the number of G-trivial composition factors.

4. Covering groups

We will also switch between the simple group and a covering group. Recall that a
group G is quasisimple if it is perfect and G=Z.G/ is a nonabelian simple group.
Recall also the definition of h0.G/ from (1.3).
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If N is a normal of G and M is a G-module with M N D M , then we may and
do view M as a G=N -module.

Lemma 4.1. Let G be a finite quasisimple group. Let r be prime and let Z be a
central r-subgroup of G. Let M be a nontrivial irreducible F G-module with F a
field of characteristic p.

(1) If M Z D M , then H 1.G=Z; M/ Š H 1.G; M/.

(2) If r ¤ p, then either Z acts nontrivially and H 2.G; M/ D 0, or Z acts trivially
and H 2.G=Z; M/ Š H 2.G; M/.

(3) If r D p, then Z acts trivially on M , and

dim H 2.G=Z; M/ � dim H 2.G; M/

� dim H 2.G=Z; M/ C c dim H 1.G=Z; M/;

where c is the rank of Z. In particular,

dim H 2.G; M/ � dim H 2.G=Z; M/ C dim M

(4) h0.G=Z/ � h0.G/ � h0.G=Z/ C 1.

Proof. The first statement follows by Lemma 3.8. (2) is included in Lemma 3.12.
So assume that r D p.
We use the inequality from Lemma 3.8 (2):

dim H 2.G; M/ � H 2.G=Z; M Z/Cdim H 2.Z; M/GCdim H 1.G=Z; H 1.Z; M//:

Now dim H 2.Z; M/G � dim HomG.Z; M/ C dim HomG.^2.Z/; M/ D 0 by
Lemma 3.16 since M G D 0. So the middle term of the right hand side above is 0.
Now H 1.Z; M/ Š Hom.Z=pZ; M/. Since Z=pZ is a direct sum of c copies
of the trivial FpG-module, where c is at most the rank of Z, Hom.Z=pZ; M/ is
isomorphic to c copies of M (as a G-module). Thus, dim H 1.G=Z; H 1.Z; M// �
c dim H 1.G=Z; M/ and so the second inequality in (3) holds. Since c � 2 [16,
pp. 313–314], and dim H 1.G=Z; M/ � .dim M/=2, the last part of (3) follows.

Finally we show that dim H 2.G=Z; M/ � dim H 2.G; M/. We use relation
modules for this purpose. Write G D F=R where F is free of rank d.G/. Let
S=R be the central subgroup of F=R corresponding to Z. Let R.p/ D R=ŒR; R�Rp

be the p-relation module for G and S.p/ D S=ŒS; S�Sp the p-relation module for
G=Z. Clearly, there is a G-map � W R.p/ ! S.p/ with S.p/=�.R.p// having
trivial G-action. Thus, the multiplicity of an irreducible nontrivial G-module M

in S.p/=Rad.S.p// is at most the multiplicity of M in R.p/=Rad.R.p//. Since
these multiplicities are dim H 2.G; M/ � dim H 1.G; M/ and dim H 2.G=Z; M/ �
dim H 1.G=Z; M/, and since, by (1), dim H 1.G=Z; M/ D dim H 1.G; M/, the
inequality follows.

Now (4) follows from (1), (2), (3) and (1.2).
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We can interpret this for profinite presentations. Recall that Or.G/ is the minimal
number of relations required among all profinite presentations of the finite group G.

Corollary 4.2. Let G be a quasisimple group with a central subgroup Z.

(1) Or.G=Z/ � maxfOr.G/; 2Crank.J /g � maxfOr.G/; 4g, where J D H 2.G=Z; C�/

is the Schur multiplier of G=Z.

(2) Or.G/ � Or.G=Z/ C 1.

Proof. We first prove (1). Let M be an irreducible G=Z-module. We may view M

as a G-module. First suppose that M is trivial. Then dim H 2.G=Z; M/ � rank.J /.
Now assume that M is nontrivial. Then by Lemma 4.1 (3),

dim H 2.G; M/ � dim H 1.G; M/ � dim H 2.G=Z; M/ � dim H 1.G=Z; M/:

It follows by (1.1) that either Or.G=Z/ D 2 C rank.J / � 4 or Or.G=Z/ � Or.G/,
whence the result holds.

We now prove (2). Note that d.G/ D d.G=Z/. Let M be an irreducible
FpG-module which achieves the maximum Or.G/ in (1.1). If M is trivial, then
dim H 2.G=Z; M/ � dim H 2.G; M/ and so Or.G/ � Or.G=Z/ in this case.

Suppose that M is nontrivial. If Z acts nontrivially on M , then H j .G; M/ D 0

for all j , a contradiction. So we may assume that Z is trivial on M . Then by
Lemma 4.1 (4),

dim H 2.G; M/

dim M
� dim H 2.G; M/

dim M
C 1;

As noted in the previous proof, dim H 1.G; M/ D dim H 1.G=Z; M/. Now apply
(1.1).

The previous two results allow us to work with covering groups rather than simple
groups. So if we prove that the universal central extension G of a simple group S

can be presented profinitely with r � 4 relations, the same is true for any quotient
of G (and in particular for S ). Conversely, if a finite simple group S can be presented
with r profinite relations, then any quasisimple group with central quotient S can be
presented with r C 1 profinite relations.

5. Faithful irreducible modules and Theorem C

In this section we show that a bound for dim H 2.G; M/= dim M with G simple and
M a nontrivial irreducible FpG-module implies a related bound for arbitrary finite
groups and irreducible faithful modules. In particular, this shows how Theorem B
implies Theorem C.
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It is much easier to prove that dim H 1.G; M/ � dim H 1.L; M/ if M is an irredu-
cible faithful F G-module and L is any component of G. See [18] and Lemma 5.2 (5)
below for a stronger result.

For H 2, the reduction to simple groups is more involved, and it is not clear that
the constant one obtains for simple groups is the same constant for irreducible faithful
modules. Holt [30] used a similar reduction for a weaker result, but it is not sufficient
to appeal to his results.

If L is a nonabelian simple group, let

hi .L/ D maxfdim H i .L; M/= dim M g;
where the maximum is taken over all nontrivial irreducible FpL-modules and all p. So
h2.L/ D h0.L/ as defined in (1.3). Let op.L/ denote the maximal dimension of any
section of Out.L/ that is an elementary abelian p-group (this is called the sectional
p-rank of Out.L/). Let o.L/ D maxpfop.L/g. We record some well-known facts
about this. See [16, Chapter 4].

Lemma 5.1. Let L be a nonabelian finite simple group. Then op.L/ � 2 for p odd,
and o.L/ � 3.

(1) If L D An; n ¤ 6 or L is sporadic, then Out.L/ has order at most 2, and
o.L/ � 1.

(2) Out.A6/ is elementary abelian of order 4.

(3) Assume that L is of Lie type. Then o2.L/ � 2 unless L Š PSL.d; q/ with q odd
and d > 2 even, or L Š P �C.4m; q/ with q odd.

Lemma 5.2. Let F be a field of characteristic p, G a finite group and M an irreducible
F G-module that is faithful for G. Assume that H k.G; M/ ¤ 0 for some k > 0 .and
so in particular, p > 0/.

(1) Op.G/ D Op0.G/ D 1; in particular G is not solvable.

(2) Let N D F�.G/. For some t � 1, N is a direct product of t nonabelian simple
groups.

(3) G has at most k minimal normal subgroups.

(4) If W is an irreducible FN -submodule of M , and if two distinct components of G

act nontrivially on W , then H 1.G; M/ D 0 and dim H 2.G; M/ � .dim M/=4.
In particular, this is the case if G does not have a unique minimal normal
subgroup.

(5) Suppose that N is the unique minimal normal subgroup of G and L is a com-
ponent of G.

(a) dim H 1.G; M/ � dim H 1.L; W / for W any irreducible L-submodule of
M with W L D 0.
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(b) dim H 2.G; M/ � .h1.L/.o.L/ C 1=2/ C h2.L/=t/ dim M .

(c) If N D L, then dim H 2.G; M/ � .h2.L/ C 1/ dim M .

Proof. The hypotheses imply that M is not projective and so p > 0. Since M

is faithful and irreducible, Op.G/ D 1. If Op0.G/ ¤ 1, then by Corollary 3.12,
H d .G; M/ D 0 for all d . So (1) and (2) hold.

We may assume that F is algebraically closed (see Lemma 3.2). Write N D
N1 � � � � � Ne where the Ni are the minimal normal subgroups of G. Let W be
an irreducible FN -submodule. Then W D W1 ˝ � � � ˝ We is a tensor product
of irreducible FNi -modules. Since M is faithful and irreducible, M Ni D 0. In
particular, each Ni is faithful on W , whence Wi is nontrivial for each i .

It follows by Lemma 3.10, that H j .N; W / D 0 for j < e. So H j .N; gW / D 0

for any g 2 G with j < e. Since M is a direct sum of irreducible N -modules of
the form gW , g 2 G, H j .N; M/ D 0 for j < e. It follows by Lemma 3.11 that
H j .G; M/ embeds in H j .N; M/ D 0 for j < e, whence (3) follows (see also [49]).

The same argument shows that H j .G; M/ D 0 if there is an irreducible FN -
submodule W of G in which at least j C 1 components act nontrivially. If pre-
cisely j components act nontrivially, the argument shows that dim H j .G; M/ �
.dim M/=2j . Since Ni has no fixed points on M , it follows that at least e compo-
nents act nontrivially on any irreducible FN -submodule, whence (4) holds.

So assume that N is the unique minimal normal subgroup of G. Write N D
L1 � � � � � Lt with the Li isomorphic nonabelian simple groups. Set L D L1 and
h1 D h1.L/.

Let W be an irreducible FN -submodule with W L D 0. Suppose first that Lj

acts nontrivially on W for some j > 1. Arguing as above and using Lemma 3.10
and Lemma 3.8 shows that H 1.G; M/ D H 1.N; M/ D 0. Similarly, we see that
dim H 2.N; W / � h2

1 dim W and dim H 2.G; M/ � dim H 2.N; M/ � h2
1 dim M .

Using (1.2) shows that (5) (b) follows in this case.
So to complete the proof of all parts of (5), we may assume that Lj is trivial on W

for j > 1 (for case (5) (c), there is only one component).
We now prove the first part of (5). Let U be the largest L-homogeneous submodule

of M containing W (i.e. U is the L-submodule generated by the L-submodules
isomorphic to W ).

Let I be the stabilizer of U in G. Note that I � NG.L/ (since for j ¤ 1,
Lj acts trivially on U ). Since M is irreducible, U is an irreducible I -module.
Let R D LCI .L/. By Lemma 3.4, H k.G; M/ Š H k.I; U /. By Lemma 3.11,
dim H 1.I; U / � dim H 1.R; U /. Since R D L � CI .L/, U is a direct sum of mod-
ules of the form W ˝ X where each X is an irreducible CI .L/-module. Since W is
irreducible, it follows that either all X are trivial CI .L/-modules or none are. In the
latter case, H 1.R; W / D 0 by Lemma 3.10, and so H 1.G; M/ D 0. So CI .L/ acts
trivially on U . Set J D I=CI .L/.
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By Lemma 3.8, dim H 1.I; U / � dim H 1.J; U / C dim H 1.CI .L/; U /I . Since
CI .L/ is trivial on W , H 1.CI .L/; W /I is the set of I - homomorphisms from CI .L/

to U . Since L acts trivially on CI .L/ and U L D 0, H 1.CI .L/; U /I D 0. Thus
dim H 2.I; U / � dim H 2.J; U /. Note that J is almost simple with socle L and
that J acts irreducibly on U . So we have reduced the problem to the case t D 1,
CG.L/ D 1 and G D I . Now use the fact that G=L is solvable (which depends on the
classification of finite simple groups) and let D=L be a maximal normal subgroup of
I=L. So I=D is cyclic of prime order s. If D does not act homogeneously, then U is
induced and we can apply Lemma 3.4. So we may assume that D acts homogeneously.
It follows by Clifford theory and the fact that I=D is cyclic that D acts irreducibly
on U . By Lemma 3.11, dim H 1.I; U / � dim H 1.D; U /I � dim H 1.D; U /, and so
by induction (on jI W Lj), dim H 1.D; U / � dim H 1.L; W /, as required.

Now consider H 2.G; M/ in (5). Let Mi D ŒLi ; M �. So M is the direct sum
of the Mi . Another application of Lemma 3.8, together with the fact that M N D 0,
shows that

dim H 2.G; M/ � dim H 2.N; M/G C dim H 1.G=N; H 1.N; M//:

Now H 2.N; M/ is the direct sum of the H 2.N; Mi / Š H 2.Li ; Mi / (by Lemma 3.10),
and G permutes these terms transitively. Thus dim H 2.N; M/G � dim H 2.L; M1/ �
.h2.L/=t/ dim M .

Similarly, H 1.N; M/ is the direct sum of the H 1.Li ; Mi /, and G=N permutes
these. Thus, H 1.N; M/ is an induced G=N -module, and so by Shapiro’s Lemma
(Lemma 3.4) H 1.G=N; H 1.N; M// Š H 1.NG.L/=N; H 1.L; M1//. Note that M1

is an irreducible NG.L/-module and is a faithful L-module (since M is irreducible
for G).

Let P be a Sylow p-subgroup of NG.L/. Let K D \iNP .Li / and note that K is
normal in P . Then KN=N can be generated by o.L/t elements (by induction on t ).
By [4, Theorem 2.3], P=K can be generated by bt=2c elements, whence PN=N

can be generated by at most .o.L/ C 1=2/t elements. Since dim H 1.L; M1/ �
h1.L/.dim M1/, it follows that

dim H 1.NG.L/=N; H 1.L; M1// � dim H 1.PN=N; H 1.L; M1//

� h1.L/.o.L/ C 1=2/t dim M1

D h1.L/.o.L/ C 1=2/ dim M:

Thus,
dim H 2.G; M/

dim M
� h1.L/.o.L/ C 1=2/ C h2.L/=t:

This gives (5) (b).
We now prove (5) (c). So assume that t D 1. Then PN=N can be generated

by o.L/ elements and so we get the bound dim H 2.G; M/= dim M � h2.L/ C
o.L/h1.L/.
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By (1.2), h2.L/ C o.L/h1.L/ � h2.L/ C 1 unless o.L/ > 2. However, we have
already noted that in the cases where o.L/ D 3, L must be a group of Lie type over
a field of odd characteristic and the p-subgroup of Out.L/ requiring 3 generators
must be a 2-subgroup. It follows by [28] that in all these cases dim H 1.L; M/ �
.dim M/=3, whence the result holds.

Theorem 5.3. Let F be a field, G be a finite group with M a faithful irreducible
F G-module. If H 2.G; M/ ¤ 0, then G has a component L and

dim H 2.G; M/

dim M
� maxf7=4; h2.L/ C 1g:

Proof. Since H 2.G; M/ ¤ 0, the previous lemma applies. If G has more than one
minimal normal subgroup, then dim H 2.G; M/ � .dim M/=4 by Lemma 5.2 (4), and
the result holds. So we may assume that G has a unique minimal normal subgroup N ,
that L is a component of G and that N is a direct product of t conjugates of L. Now
the bound in (5) (b) of the previous lemma applies.

As we have noted above, o.L/ � 3 with equality implying that G is a finite group
of Lie type A of rank at least 3 or of type D of rank at least 4. If o.L/ � 2, it follows
from (1.2) that h1.L/.o.L/ C 1=2/ � 7=4. If o.L/ D 3, it follows from [19] that
h1.L/ � 1=3, whence h1.L/.o.L/ C 1=2/ � 5=4.

Let t be the number of components of G. If t D 1, the result follows by (5) (c)
of the previous lemma. So assume that t > 1. By (5) (b) of the previous result,
dim H 2.G; M/= dim M � h1.L/.o.L/ C 1=2/ C h2.L/=2. The right hand side is
bounded above by .5=4/ C h2.L/=2 � maxf7=4; h2.L/ C 1g, and the result follows.

An immediate consequence of the previous result is:

Corollary 5.4. Theorem B implies Theorem C.

6. Alternating and symmetric groups

We will need the following better bound for H 1 for alternating groups given in [23].

Theorem 6.1. Let G D An, n > 4. If F is a field and M is an irreducible F G-
module, then

(1) dim H 1.G; M/ � .dim M/=.f � 1/ where f is the largest prime such that
f � n � 2;

(2) dim H 1.G; M/ � .2=n/ dim M for n > 8;

(3) dim H 1.A8; M/ � .dim M/=6; and
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(4) if F has characteristic p, then dim H 1.G; M/ � .dim M/=.p � 2/.

The goal of this section is to prove the following results:

Theorem 6.2. Let G D An or Sn; n > 4, and let p be a prime. Let F be a field of
characteristic p and M an F G-module.

(1) If p > 3, then dim H 2.G; M/ � .dim M/=.p � 2/ � .dim M/=3.

(2) If p D 3, then dim H 2.G; M/ � dim M with equality if and only if n D 6 or 7

and M is the trivial module.

(3) If p D 2, then dim H 2.An; M/ � .35=12/ dim M .

(4) If p D 2, then dim H 2.Sn; M/ < 3 dim M .

These results are likely quite far from best possible. By (1.1) and Corollary 4.2,
this gives:

Corollary 6.3. (1) Or.An/ � 4,

(2) Or.Sn/ � 4, and

(3) if G is any quasisimple group with G=Z.G/ D An, then Or.G/ � 5.

Almost certainly, it is the case that Or.An/ D Or.Sn/ D 3 for n > 4. Since the
Schur multipliers of An and Sn are nontrivial for n > 4, Or.An/ and Or.Sn/ are both at
least 3. The proof we give says very little about finding specific relations. It would
be quite interesting to pursue this further.

The main idea is to pass to a subgroup containing a Sylow p-subgroup of G and
having a normal subgroup that is a direct product of alternating groups. We then use
induction together with the results of Section 3.

We do this first for p > 3, then for p D 3 and finally for p D 2. If p > 3, each
of these smaller alternating groups is simple and has Schur multiplier prime to p. If
p D 3, there may be an A3 factor. Also, A6 and A7 have Schur multipliers of order 6.
For p D 2, there may be solvable factors, all Schur multipliers have even order and
there are further complications as well.

6.1. p > 3. For this subsection, let F be an algebraically closed field of characteristic
p > 3. Our goal is to prove the following result, which includes Theorem 6.2 for
p > 3.

Theorem 6.4. Let p > 3 be a prime. Let G D An and F a field of characteristic p.
If M is an F G-module, then dim H j .G; M/ � .dim M/=.p � 2/ for j D 1; 2.
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Proof. We induct on n. If p < n, all F G-modules are projective and so H j .G; M/D0

for j > 0.
If p does not divide n, then the restriction map from H j .An; M/ to H j .An�1; M/

is injective by Lemma 3.6 and the result follows. So we may assume that p jjn. Since
G is perfect, Lemma 3.9 implies that H 1.G; F / D 0, and since p does not divide the
order of the Schur multiplier of G, H 2.G; F / D 0.

As usual, we may assume that M is an irreducible F G-module.
If n D p, then by Lemma 3.5, dim H j .G; M/ � 1. Thus, the result follows by

noting that dim M � p � 2 for every nontrivial irreducible G-module.
Suppose that n ¤ pa for any a. Write n D pa C n0 where pa is the largest power

of p less than n. Set H D Apa � An0 < G. Since H contains a Sylow p-subgroup
of G, it suffices to show by Lemma 3.6 that H satisfies the conclusion of the theorem.
So let V D V1 ˝ V2 be an irreducible FH -module. If V is a trivial H -module,
then H j .H; V / D 0 for j D 1; 2 (by Lemma 3.9). Otherwise, the result follows by
Lemma 3.10 and induction.

Finally suppose that n D paC1 > p. Let H D Apa o Ap < G. Then H contains
a Sylow p-subgroup of G and again it suffices to show that the conclusion holds
for H . Let V be an irreducible FH -module. Let N be the normal subgroup of H with
H=N Š Ap . So N D L1 � � � � � Lp where Li Š Apa . The result is straightforward
and easier for H 1, and we just give the argument for H 2. By Lemma 3.8,

dim H 2.H; V / � dim H 2.H=N; V N / C dim H 2.N; V /H

C dim H 1.H=N; H 1.N; V //:

If N is trivial on V , then the last two terms are 0 and the result holds since we already
know the theorem for n D p. So suppose that V N D 0. Let W be an irreducible
FN -submodule of V . So W D W1 ˝ � � � ˝ Wp , where Wi is an irreducible FLi -
module. By Lemma 3.10, H 1.N; W / D 0 unless (after reordering if necessary) W1

is nontrivial and Wj is trivial for each j > 1. Suppose that for some j > 1, Wj ,
is nontrivial. Thus, by Lemma 3.10, H 1.N; W / Š H 1.N; gW / D 0 for every
g 2 G Since W is a direct sum of N -submodules of the form gW; g 2 G, this
implies that H 1.N; V / D 0. By Lemma 3.11 and induction, dim H 2.H; V / �
dim H 2.N; V /H � .dim V /=.p � 2/.

Now suppose that W1 is nontrivial and Wj is trivial for all j > 1. Let W1 �
M1 be the set of fixed points of L2 � � � � � Lp on V . The stabilizer of M1 is
clearly NH .L1/, and so V is induced from M1. By Shapiro’s Lemma (Lemma 3.4),
H 2.H; M/ Š H 2.NH .L1/; M1/. Since ŒNH .L1/ W N � is prime to p, it follows
by Lemma 3.12 that dim H 2.H; M/ � dim H 2.N; M1/. By Lemma 3.10 and the
fact that H 1.Lj ; M1/ D 0 for j > 0, H 2.N; M1/ D H 2.L1; M1/ and the result
follows.
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6.2. p D 3

Theorem 6.5. Let G D An; n > 2 and F a field of characteristic p D 3. Let M be
an irreducible F G-module.

(1) If M is trivial, then H 2.G; M/ D 0 unless n D 3; 4; 6 or 7, in which case
H 2.G; M/ is 1-dimensional.

(2) If n D 3a > 3, then dim H 2.G; M/ � .3=5/ dim M .

(3) If M is nontrivial, then dim H 2.G; M/ � .21=25/ dim M .

Proof. The proof proceeds as in the previous result. However, note that if M is the
trivial module, then H 2.G; M/ is 1-dimensional for n D 3; 4; 6 and 7 and 0 otherwise
(for n � 5, see [16, p. 314] and for n D 3 or 4, a Sylow 3-subgroup is cyclic). We
use Lemma 3.6 extensively and sometimes without comment.

So assume that M is irreducible and nontrivial. There is no loss in assuming that
F is algebraically closed.

If n � 12, the result is in [42]. By induction, using Lemma 3.6, we may assume
that n is divisible by 3 (since n > 12 and (1) implies that trivial modules are not an
exception to the bound).

Case 1. n D 3aC1 > 9.
Let N WD H1 � H2 � H3 where each Hi D A3a . Let H be a subgroup of the

normalizer of N with H=N Š A3. Note that H contains a Sylow 3-subgroup of G

and so Lemma 3.6 applies.
Let V be an absolutely irreducible FH -module. If V N D V , then by Lemma 3.8,

dim H 2.H; V / � dim H 2.H=N; V / C dim H 2.N; V /H

C dim H 1.H=N; H 1.N; V //:

Since 3a > 3, the Schur multiplier of N is a 2-group and so the middle term above
is 0. Since N is perfect, the last term above is 0, and so dim H 2.H; V / � 1 by
Lemma 3.5.

Suppose that V N D 0. Let W be an irreducible FN -submodule of V . Write
W D W1 ˝ W2 ˝ W3 where Wi is an FHi irreducible module. We may assume that
W1 is nontrivial. By Lemma 5.3, either dim H 2.H; V / � dim H 2.N; V / � dim V=4

or W2 and W3 are trivial. Thus, V D XH
N where X is the fixed space of H2 � H3. By

Lemma 3.4, it follows that H 2.H; V / Š H 2.N; X/. By Lemma 3.10, H 2.N; X/ Š
H 2.H1; X/. By induction, dim H 2.H; V / � .3=5/ dim X D .1=5/ dim V .

We claim that the number d of trivial composition factors of N on M is at most
.dim M/=2 (in fact, it is usually much less). Let T be a Sylow 2-subgroup of N . It is
easy to see that some pair of conjugates of T generate G. So we see by Lemma 3.19 that
d � dim M T � .dim M/=2. The previous paragraphs show that dim H 2.H; M/ �
d C .dim M � d/=5. Since d � .dim M/=2, this implies that dim H 2.H; M/ �
.dim M/=2 C .dim M/=10 D .3=5/ dim M as required.
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Case 2. n is not of the form 3a C 3 or 3a C 6.
We may assume also that n ¤ 3a (by case 1). So n D n1 C n2 where n1 D 3a >

n=3 and n2 � 9. Set H D H1 � H2 < G where the Hi are alternating groups of
degree ni . Note that ŒG W H� has index prime to 3. By induction and Lemma 3.10,
the result follows.

Case 3. n D 3a C 3 > 12.
Let H D H1 � H2 < G with H1 D A3 and H2 D A3a . Let V be an irre-

ducible FH -module. Then V is trivial for H1 (since it is a normal 3-subgroup of
H ) and irreducible for H2. If V is nontrivial then, by Lemma 3.10, H 2.H; V / Š
H 1.H2; V / ˚ H 2.H2; V /. By Theorem 6.1 and the fact that n1 � 27, the first
term has dimension at most .1=23/ dim V and the second has dimension at most
.3=5/ dim V by induction. Thus, dim H 2.H; V / < .17=25/ dim M .

If V is trivial, then dim H 2.H; V / D 1. Arguing as above, we see that the number
of H -trivial composition factors in M is at most .dim M/=2 and so

dim H 2.G; M/

dim M
� 1 C 17=25

2
D 21

25
:

Case 4. n D 3a C 6 � 15.
The proof is quite similar to the previous case.
Let H D H1 � H2 where H1 Š A3a and H2 Š A6. Then H contains a Sylow

3-subgroup of G. So it suffices to prove the bound for H . Let V be an irreducible
FH -module. So V D V1 ˝ V2 where Vi is an irreducible FHi -module for i D 1; 2.
If both Vi are nontrivial, then dim H 2.H; V / D dim H 1.H1; V1/ � dim H 1.H2; V2/.
The first term is at most .1=7/ dim V1 by Theorem 6.1 and the second is at most
.1=2/ dim V2, and so dim H 2.H; V / � .1=14/ dim M . If V1 nontrivial and V2 is
trivial, then by Lemma 3.10, H 2.H; V / Š H 2.H1; V1/ � .3=5/ dim M . If V1 is
trivial, then dim H 2.A6; V2/ � dim V2. As in the previous case, the number of trivial
composition factors for H1 is at most .dim M/=2, and the result follows as in the
previous case.

6.3. p D 2. Let F be an algebraically closed field of characteristic 2. In this section,
all modules are over F . Let n � 5 be a positive integer. Write n D Pr

iD1 2ai , where
the ai D ai .n/ are decreasing positive integers.

The next result follows since the 2-part of the Schur multiplier for An has or-
der 2 [16, p. 312].

Lemma 6.6. Let M be the trivial module.

(1) dim H 2.An; M/ D 1; and

(2) dim H 2.Sn; M/ D 2.

Lemma 6.7. Let M be an irreducible nontrivial FSn-module for n � 8. Then
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(1) dim H 2.Sn; M/ � dim H 2.An; M/ C dim M=2a1.n/�1.

(2) dim H 2.Sn; M/ � dim H 2.An; M/ C dim M=13 for n � 12.

Proof. By Lemma 3.8, we have

dim H 2.Sn; M/ � dim H 2.An; M/Sn C dim H 1.Sn=An; H 1.An; M//:

By Theorem 6.1, the right hand term is at most dim H 1.An; M/ � dim M=.f � 1/

where f is the largest prime with f � n � 2. By Bertrand’s postulate, there is a
prime f with a1.n/ � n=2 � f �1 � n�2, whence (1) holds. Now (2) holds by the
same argument for n � 15 (since 13 is prime and 13 � n � 2), and by computation
for n � 14 [42].

Lemma 6.8. Let n D 2aC1 � 4. Let G D An or Sn. Let F be an algebraically
closed field of characteristic 2. Let M be an irreducible nontrivial F G-module.

(1) If n D 4 and G D An, then dim H 2.G; M/ � 1.

(2) If n D 4 and G D Sn, then dim H 2.G; M/ � 1.

(3) If n � 8 and G D An, then dim H 2.G; M/ � .65=24/ dim M .

(4) If n � 8 and G D Sn, then dim H 2.G; M/ < .17=6/ dim M .

Proof. If n � 8, this is done by a computer computation in [42]. So assume that
n � 16. We induct on n. By (2) of the previous lemma, it suffices to prove (3). As
usual, we will compute cohomology for subgroups which contain a Sylow 2-subgroup.
So we may use Lemma 3.6.

Let N D A2a �A2a D H1�H2 and H be the normalizer in G of N . Let V be an ir-
reducible FH -module. If V is trivial, it follows by Lemma 3.8 that dim H 2.H; V / �
dim H 2.H=N; V /Cdim H 2.N; V /H Cdim H 1.H=N; H 1.N; V //. Since N is per-
fect, the last term is 0. Since H=N has order 4, the first term on the right side
of the inequality is 3. Since the Schur multiplier of each factor of N has order 2,
H 2.N; V / is 2-dimensional and H acts nontrivially on this, whence the middle term
has dimension 1. Thus, dim H 2.H; V / � 4.

Suppose that V is nontrivial. Then V N D 0. Let W be an irreducible N -
submodule of V . Write W D W1 ˝ W2. Note that V is a direct sum of N -modules
of the form gW , g 2 H . If both W1 and W2 are nontrivial, then by Lemma 3.10,
H 2.N; W / D H 1.H1; W1/ ˝ H 1.H2; W2/ and H 1.N; V / D 0. By Theorem 6.1
and Lemma 3.8, dim H 2.H; V / � dim H 2.N; V /H � .dim V /=36.

If W2 is trivial, then V is an induced module – so we may write V D U H
J

where J D N or H=J has order 2. Thus, by Lemma 3.4, H 2.H; V / Š H 2.J; U /.
If J D N , this implies that dim H 2.J; U / D dim H 2.H1; U /. So by induction,
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dim H 2.J; U / � .65=24/ dim U , whence dim H 2.H; V / � .65=96/ dim V . If J=N

has order 2, then we apply Lemma 3.8 to conclude that

dim H 2.J; U / � dim H 2.J=N2; U / C dim H 2.H2; U /J

C dim H 1.J=H2; H 1.N2; U //:

Since H2 is perfect and U is trivial for H2, the last term is 0. Since H2 is trivial on U

and H 2.N2; F / is 1-dimensional, we see that H 2.N2; U / Š U as a J -module and
so J has no fixed points on the module, whence the middle term is 0. Noting that
J=H2 Š S2a and using Lemma 6.7 and induction, we conclude that dim H 2.J; U / �
.17=6/ dim U . Since dim U D .dim V /=2, we obtain the desired inequality that
dim H 2.H; V / � .17=12/ dim V .

Note H contains an element h that is the product of two disjoint cycles of length
2a � 1. It is easy to see that An can be generated by two conjugates of h. Setting J D
hhi and using Lemma 3.19, we see that the number ˛ of trivial H -composition factors
in M is at most .dim M/=2. Thus, dim H 2.H; M/ � 4˛ C .17=12/.dim M � ˛/.
Since ˛ � .dim M/=2, this implies that dim H 2.H; M/ � .65=24/ dim M .

Theorem 6.9. Let n > 4 be a positive integer and F an algebraically closed field of
characteristic 2. Let M be an F G-module with G D An or Sn.

(1) dim H 2.An; M/ � .35=12/ dim M ; and

(2) dim H 2.Sn; M/ < 3 dim M .

Proof. If M is trivial, then dim H 2.An; M/ D 1 since a Sylow 2-subgroup of the
Schur multiplier has order 2. Since Sn=An has order 2, it follows by Lemma 3.8
that dim H 2.Sn; M/ � 2, whence the result holds in this case. So we may assume
that M is a nontrivial irreducible F G-module. If n � 14, then (1) and (2) follow by
computation [42]. So we assume that n > 14.

By Lemma 6.7, it suffices to prove the results for An. So assume that G D An

and M is a nontrivial irreducible F G-module.
The result holds for n a power of 2 by the previous lemma. So assume that this is

not the case. As usual, we will obtain bounds for a subgroup of odd index and then
apply Lemma 3.6. We may also assume that n is even (since if not, An�1 has odd
index). Thus, we may write n D n1 C n2 where n1 D 2a is the largest power of 2

less than n and n2 � 2.
First suppose that n2 D 2. Then S2a contains a Sylow 2-subgroup of G and so by

the previous lemma, dim H 2.G; M/ � .17=6/ dim M . So we assume that n2 � 4.
Let N D N1 � N2 where Ni Š Ani

and let H be the normalizer of N . Then
H=N has order 2 and H contains a Sylow 2-subgroup of G.

Let V be an irreducible FH -module. If V is trivial, then by Lemma 3.8,

dim H 2.H; V / � dim H 2.H=N; V / C dim H 2.N; V /H

C dim H 1.H=N; H 1.N; V //:
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The first term on the right hand side is 1. Since N D N1 � N2, H 2.N; V / is
2-dimensional. If n2 > 4, then N is perfect, and H 1.N; V / D 0. If n2 D 4, then
H 1.N; V / D Hom.N; V / D 0. Thus, dim H 2.H; V / � 3.

Suppose that V is nontrivial. Let W be an irreducible FN -submodule. Write
W D W1 ˝ W2 with the Wi irreducible Ni -modules. If both of the Wi are nontrivial,
then H 1.N; W / D 0 by Lemma 3.10 and so H 1.N; V / D 0 (since V is a direct
sum of submodules of the form gW; g 2 H ). Also by Lemma 3.10, H 2.N; W / D
H 1.N1; W1/ ˝ H 1.N2; W2/ has dimension at most .dim W /=4 (we leave it to the
reader to verify this when n2 D 4). It follows by Lemma 3.8 that dim H 2.H; V / �
.dim V /=4.

If W1 is nontrivial, but W2 is trivial, then dim H 2.N; W / � dim H 2.N1; W / �
.65=24/ dim W . By Lemma 3.8,

dim H 2.H; V / � dim H 2.H=N; V N / C dim H 2.N; V /H

C dim H 1.H=N; H 1.N; V //:

Note that V N D 0 and as noted above the middle term is at most .65=24/.dim V /.
Finally, observe that since H 1.N2; F / D 0, dim H 1.N; V / D dim H 1.N1; V / <

dim V=8 (this last inequality follows by Theorem 6.1 for 2a > 8). This gives
dim H 2.H; V / � .17=6/ dim V .

Finally, suppose that N1 is trivial on V , but N2 is not. We consider the inequality
above. The first term on the right side of the inequality is 0. If n2 > 8, then the
middle term is at most dim H 2.N2; V / � .65=24/ dim V and dim H 1.N; V / D
dim H 1.N2; V / � .1=13/ dim V . Thus

dim H 2.H; V / � ..65=24/ C .1=13//.dim V / < .17=6/ dim V:

If n2 < 8, it follows by [42] that dim H 2.N2; V / C dim H 1.N2; V / � dim V for
all nontrivial irreducible modules. In particular, it follows that dim H 2.H; V / �
.17=6/.dim V / for all values of n2.

Arguing as usual, we see that the number of trivial composition factors of N1

on M is at most .dim M/=2. Thus, by the previous arguments, dim H 2.H; M/ �
.3=2 C 17=12/ dim M D .35=12/ dim M .

7. SL: low rank

In this section, we consider the groups SL.d; q/; d � 4. We use a gluing argument
and the bounds for SL.4; q/ and Sd to get bounds for all SL.d; q/ in the next section.

We start with an improvement of the bound given in (1.2) for H 1 in the natural
characteristic. There are much better bounds for cross characteristic representations
[28]. We will use Lemma 3.6 without comment below.
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Theorem 7.1. Let G D SL.d; q/ be quasisimple and F an algebraically closed field
of characteristic p with q D pe . Let M be an irreducible F G-module.

(1) If d D 2, then dim H 1.G; M/ � .dim M/=3 unless either p D 2 and dim M D
2 or p D 3 and G D SL.2; 9/ with dim M D 4.

(2) dim H 1.G; M/ � .dim M/=d 0, where d 0 is the largest prime with d 0 � d .

Proof. If d D 2, all first cohomology groups have been computed [1], and the result
holds by inspection.

If the center of G acts nontrivially on M , then H 1.G; M/ D 0 by Lemma 3.12.
So we may view M as an H -module with H D PSL.d; q/. Note that by Lemma 3.8,
H 1.G; M/ Š H 1.H; M/.

We now prove (2) when d is an odd prime. Let T be a maximal (irreducible) torus
of size .qd � 1/=..q � 1/ gcd.d; q � 1//. Let N D NH .T / and note that N=T is
cyclic of order d . We claim that d does not divide jT j. If d does not divide q � 1,
this follows from the fact that qd � q mod d . If d jj .q � 1/, then write q D 1 C d j s

where d does not divide s. Then since d is odd, qd D 1 C d j C1s0 where d does not
divide s0 and this proves the claim.

Let y 2 N be of order d . We claim that CT .y/ D 1. Since gcd.jT j; d / D 1, we
can lift T to an isomorphic subgroup of SL.d; q/ and it suffices to prove CT .y/ D 1

in SL.d; q/. Then we can identify T with the norm 1 elements in F�
qd of order prime

to d and y induces the q-Frobenius automorphism of this field, whence its fixed
point set is F�

q . This has trivial intersection with T , whence the claim follows. This
also implies that y permutes all nontrivial characters of T in orbits of size d . Thus
dimŒT; M�hyi D .dimŒT; M�/=d .

Note that up to conjugacy, y is a d -cycle in Sd � PSL.d; q/. So y is conjugate
to y�1 in Sd and so also in H . So choose z 2 H that inverts y. Then z does not
normalize T (since y is not conjugate to y�1 in N ). It now follows by the main result
of [9] (based on [24]) that H D hN; zNz�1i. Apply [23, Lemma 4] to conclude that
dim H 1.H; M/ � dimŒT; M�hyi � .dim M/=d .

We now complete the proof of (2) by induction. We have proved the result for d

any odd prime. It is more convenient work with FqG-modules. Suppose d is not
prime – in particular, d 0 � d � 1 in (2). Let P be a maximal parabolic stabilizing a
1-space. So P D LQ where Q is the unipotent radical of P , L is a Levi subgroup with
L Š GL.d�1; q/ and Q is the natural module for J D SL.d�1; q/ � L. Since P

contains a Sylow p-subgroup of G, it suffices to prove the bound for H 1.P; V /

with V an irreducible L-module. If V is not isomorphic to Q as FpL-modules
(equivalently, if V is not isomorphic to a Galois twist of Q as FqL-modules), then
H 1.P; V / D H 1.L; V / (by Lemma 3.8) and the result follows by induction. If
V Š Q, then H 1.L; Q/ D 0 unless q D 2 and d D 4 (cf. [7]). This implies that
dim H 1.P; V / D 1 � .dim V /=.d � 1/ � .dim V /=d 0. If q D 2 and d D 4, then
G D A8, and the result is in [42].
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7.1. SL.2/

Theorem 7.2. Let G D SL.2; pe/ with p odd, pe � 5 and F an algebraically closed
field of characteristic r > 0. Let M be an irreducible F G-module. Set q D pe .

(1) If r ¤ 2 and r ¤ p, then dim H 2.G; M/ � 2.dim M/=.q � 1/.

(2) If p ¤ r D 2, then dim H 2.G; M/ � dim M .

(3) If r D p, then dim H 2.G; M/ � .dim M/=2.

Proof. If q � 11, these results all follow by direct computation [42]. So assume that
q > 11.

In (1), a Sylow r-subgroup of G is cyclic, whence Lemma 3.5 implies that
dim H 2.G; M/ � 1. Since the smallest nontrivial representation of SL.2; q/ in
any characteristic other than p has dimension .q � 1/=2, (1) holds.

Now consider (2). We first bound dim H 2.PSL.2; q/; M/. Set H D PSL.2; q/.
We refer the reader to [11] for basic facts about the 2-modular representations of H .
In particular, every irreducible representation is the reduction of an irreducible repre-
sentation in characteristic zero. The characters of these representations are described
in [14, Theorem 38.1]. Let B D T U be a Borel subgroup of H (of order q.q � 1/=2)
with T a torus of order .q � 1/=2. Note that B has a normal subgroup U T0 of index
a power of r .

It follows from [11] and [14, 38.1] that either M is one of two Weil modules of
dimension .q � 1/=2 or has dimension q ˙ 1. Moreover, it follows that the modules
of dimension q C1 are all of the form �H

B with � a nontrivial 1-dimensional character
of B , and so by Shapiro’s Lemma, H 2.H; M/ Š H 2.B; �/. Since � is nontrivial, it
is nontrivial on U T0 and so by Lemma 3.12, H 2.B; �/ D 0.

Suppose that dim M D q � 1. If 4 jj .q � 1/, then M is projective (cf. [14, 62.3,
62.5]) and so H 2.H; M/ D 0. So suppose that 4 jj .q C 1/. By inspection of the
character tables in [14, 38.1], M is multiplicity free as a U -module and so every
nontrivial character of U occurs precisely once in M . Since T acts semiregularly
on the nontrivial characters of U (and so all the U -eigenspaces as well), M is a free
rank 2 module for the split torus T . Let x be an involution inverting T . Note that
jT j D .q � 1/=2 is odd. Thus, the only T -eigenspace that is x-invariant is the trivial
eigenspace. Write M D ŒT; M� ˚ M T . So all Jordan blocks of x on ŒT; M� are of
size 2. Since dim M T D 2, x has either 0 or 2 Jordan blocks of size 1. Since there
is a unique class of involutions in H , this implies that if Y is any cyclic 2-subgroup
of H , thenY has at most 2 Jordan blocks of less than maximal size on M . Since
Jordan blocks of maximal size correspond to projective modules, this implies that
dim H k.Y; M/ � 2 for k > 0.

Let J be a nonsplit torus of order .q C1/=2. There is a unique class of involutions
in H and so by conjugating we may assume that x is the unique involution in J .
Write J D J1 � J2 where J1 has odd order and J2 is the Sylow 2-subgroup of J .
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Set s D jJ2j. We see from [11] and [14] that dim M J1 D 2s or 2s � 2 and so
from our observations about the Jordan structure of the involution in J , J has at most
3 Jordan blocks with trivial character and at most 2 of those have size less than s.
By Lemma 3.12, H j .J; ŒJ1; M �/ D 0. So H j .J; M/ D H j .J2; M J1/. Thus,
dim H j .J; M/ � 2 for j > 0 and dim M J � 3. Let L D NH .J / and note that
ŒH W L� is odd. By Lemma 3.8,

dim H 2.L; M/ � dim H 2.L=J; M J / C dim H 2.J; M/

C dim H 1.L=J; H 1.J; M//:

The first term on the right is at most 3, the middle term at most 2 and the last term at
most 2. Thus, dim H 2.G; M/ � 7. Since q > 11, this implies that dim H 2.G; M/ <

.7=18/ dim M < .dim M/=2.
Finally, consider the case that M is a Weil module. In this case (by [14, Theo-

rem 38.1]), Q has .q � 1/=2 distinct characters on M that are freely permuted by T ,
whence M Š F T as an F T -module. If 4 jj .q � 1/, then the normalizer of T has
odd index, and arguing as above, we see that dim H 2.H; M/ � 1. If 4 does not
divide q � 1, then as above, we see that an involution has precisely one trivial Jordan
block, and so if i > 0, dim H i .J; M/ � 1. In all cases dim H 2.H; M/ � 3. Thus,
dim H 2.H; M/ < .dim M/=2 (since q � 11).

Let Z D Z.G/ and note that jZj D 2. In all cases,

dim H 2.G; M/ � dim H 2.H; M/ C dim H 2.Z; M/G C dim H 1.H; H 1.Z; M//:

If M is trivial, then dim H 2.G; M/ D 1. Otherwise, the middle term on the right is 0.
The first term on the right is at most dim M=2. The last term is at most .dim M/=2.
Thus, dim H 2.G; M/ � dim M .

Finally, consider (3). It is more convenient to work over F D Fp in this case. Let
B D T U be a Borel subgroup with jU j D q.

Let W be an irreducible FB-module. Then by Lemma 3.8 and the fact that T has
order coprime to p,

dim H 2.B; W / � dim H 2.U; W /T :

Note that U is a T -module by conjugation. As we have seen (Lemma 3.16),
H 2.U; W / D ^2.U �/ ˝ W ˚ U � ˝ W . So T has fixed points if and only if either
U Š W or W is a homomorphic image of ^2.U /. Note we are taking exterior powers
over F and so ^2.U / has dimension e.e � 1/=2. Suppose that ˛ of order .q � 1/=2

is an eigenvalue on U for a generator t of T . Then the eigenvalues of t on U (over
the algebraic closure) are just the e Galois conjugates of ˛. So the eigenvalues of t

on ^2.U / are all Galois conjugates of ˛1Cpj
for some 0 < j < e. Note that this is

never a Galois conjugate of ˛ and also T has no multiple eigenvalues on ^2.U / (by
Lemma 3.17).
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So we have seen that H 2.B; W / D 0 unless W Š U or W Š U ˝Fq
U pj

for some j with 1 < j < e as FpT -modules. Moreover, as noted above, ^2.U / is
multiplicity free, and so, using Lemma 3.16, dim H 2.B; W /T � dim W .

This already gives the inequality dim H 2.G; M/ � dim H 2.B; M/ � dim M .
If M is trivial, then H 2.G; M/ D 0. If M is irreducible and nontrivial, then if W

occurs as a T -submodule, so does W �. Thus, in fact, dim H 2.B; M/ � .dim M/=2.

Theorem 7.3. Let G D SL.2; q/ with q D 2e � 4, and let F be an algebraically
closed field of characteristic r > 0. Let M be an irreducible F G-module.

(1) If r ¤ 2, then dim H 2.G; M/ � .dim M/=.q � 1/.

(2) If r D 2, then dim H 2.G; M/ � .dim M/=2 unless 2e D 4 and M is the trivial
module.

Proof. If r is odd, then a Sylow r-subgroup is cyclic, whence dim H 2.G; M/ � 1 by
Lemma 3.5. If M is trivial, H 2.G; M/ D 0. It is obvious that the smallest faithful
representation for a Borel subgroup has dimension q � 1, whence also for G.

Let r D 2. If q > 4, the proof is identical to the proof in the previous lemma
when p D r . If q D 4, then ^2.U / is the trivial module, which explains why
H 2.SL.2; 4/; F / ¤ 0. For q D 4, the result follows by [42].

7.2. SL.3/

Theorem 7.4. Let p and r be primes. Let G D SL.3; q/; q D pe , F D Fr and M

an irreducible F G-module. Then either dim H 2.G; M/ � dim M or 3 D r ¤ p

and dim H 2.G; M/ � .3=2/ dim M .

Proof. If q � 4, the result follows by a direct computation [42]. So assume that
q > 4.

First consider the case that r ¤ p.
If r does not divide q � 1, then a Sylow r-subgroup of G is cyclic, whence the

result holds by Lemma 3.5.
Next suppose that 3 ¤ r jj .q � 1/. Then a Sylow r-subgroup fixes a 1-space and

a complementary 2-space in the natural representation. Let P be the full stabilizer
of one of these subspaces with unipotent radical Q. Then for one of the choices
for P , dim M Q � .dim M/=2. Note that P D LQ with L D GL.2; q/. Let
J D SL.2; q/ < L. So dim H 2.G; M/ � dim H 2.P; M/ � dim H 2.L; M Q/

(here we are using Lemma 3.8 and the fact that r does not divide jQj). Let V be an
irreducible L-module. If V is the trivial module, then dim H 2.L; V / D 1 (since J

has trivial Schur multiplier and L=J is cyclic of order a multiple of r). Otherwise,
by Lemma 3.8,

dim H 2.L; V / � dim H 2.J; V / C dim H 1.L=J; H 1.J; V //:
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By the results of the previous subsection we have dim H 2.J; V / � dim V , and
by (1.2) dim H 1.J; V / � .dim V /=2. Thus, dim H 2.G; M/ � .1:5/ dim M Q �
.3=4/ dim M .

Suppose that r D 3 does divide q � 1. Then a Sylow 3-subgroup is contained in
the normalizer H of a split torus T and H=T Š S3.

Let V be an irreducible FH -module. If T is nontrivial on V , then by Corol-
lary 3.12, H 2.H; V / D 0. So we may assume that dim V D 1 and H either acts
trivially on V or via the sign representation for S3. Now we use Lemma 3.8 to see
that

dim H 2.H; V / � dim H 2.S3; V / C dim H 2.T; V /H C dim H 1.S3; H 1.T; V //:

Note that H 1.T; V / Š Hom.T; V / is an indecomposable 2-dimensional S3 module.
Thus, by Lemma 3.5, the left and right hand terms of the right side of the above
inequality are each at most 1. Finally, by Lemma 3.16, there is an exact sequence

0 ! HomH .T; V / ! H 2.T; V /H ! HomH .^2.T /; V /:

Note that the only H -simple homomorphic image of T is the sign representation for
S3 while ^2.T / only surjects onto the trivial module. Thus, dim H 2.T; V /H � 1

and so dim H 2.H; V / � 3 dim V . Let T0 denote the Hall 30-subgroup of T . Then
M D ŒT0; M � ˚ M T0 . Since q > 4, T0 is nontrivial (indeed it is either a Klein
group of order 4 or contains a regular semisimple element). Considering the maximal
subgroups of SL.3; q/ [40] and [27], there are two conjugates of T0 which generate G,
whence dim M T0 � .dim M/=2 by Lemma 3.19. Since H 2.H; ŒT0; M �/ D 0 by
Lemma 3.12, the computation above shows that dim H 2.H; M/ � 3 dim M T0 �
.3=2/.dim M/.

Now consider the case p D r . Let P D LQ be the stabilizer of a 1-space or
a hyperplane where Q is the unipotent radical of P and L Š GL.2; q/ is a Levi
complement. Let Z D Z.L/ and note that Z is cyclic of order q � 1. Let T be a split
torus containing Z (of order .q � 1/2).

Let V be an irreducible FP -module. It suffices to prove that dim H 2.P; V / �
dim V . By Lemma 3.8,

dim H 2.P; V / � dim H 2.L; V / C dim H 2.Q; V /L C dim H 1.L; H 1.Q; V //:

Consider the middle term on the right. Using Lemma 3.16 and arguing as in the
proof of Lemma 3.17, ^2Q has distinct composition factors as an L-module (and no
composition factor is isomorphic to Q as an L-module), whence the second term has
dimension at most .dim V /=2 (since the dimension of V is at least 2 over EndG.V /

unless ŒL; L� acts trivially on V but then V is not a homomorphic image of Q or
^2.Q/).

Suppose that Z is trivial on V . Since q > 4, Z is nontrivial on Q and every
composition factor of ^2Q, whence the middle term on the right is 0. Similarly, Z acts
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without fixed points on H 1.Q; V / and so by Corollary 3.12, H 1.L; H 1.Q; V // D 0

as well. Thus, dim H 2.P; V / � dim H 2.L; V / and this is at most .dim V /=2 by the
result for SL.2/.

Now suppose that Z is nontrivial on V . By Lemma 3.12, H 2.L; V / D 0. Note
that W WD H 1.Q; V / Š Q� ˝ V as an L-module (however, the tensor product is
over Fp). Since V is L-irreducible, it must be Z-homogeneous. By Lemma 3.12,
H 1.L; W / D H 1.L; W Z/ and this is either 0 unless V and Q involve the same
FpZ-irreducible module. If that is the case, then dim W Z D 2 dim V . Thus by (1.2),
dim H 1.L; W / � dim V . In this case, HomZ.^2Q; V / D 0 and so dim H 2.P; V / �
dim V unless perhaps Q Š V . We still obtain this inequality since we compute in
this case that dim H 1.L; W / < dim V .

If Z is nontrivial on V , but V and Q do not involve the same irreducible FpZ-
module, then H 1.L; W / D 0 and so in this case dim H 2.P; V / � .dim V /=2.

7.3. SL.4/

Theorem 7.5. Let G D SL.4; q/, q D pe . Let F D Fp . If M is an irreducible
FpG-module, then dim H 2.G; M/ < 2 dim M .

Proof. If q � 3, see [42]. So assume that q > 3. Let P be the stabilizer of a 1-space.
Since P contains a Sylow p-subgroup, it suffices to bound dim H 2.P; M/. Write
P D LQ where Q is the unipotent radical of P and L Š GL.3; q/ is the Levi
complement.

By Lemma 3.8

dim H 2.P; M/ � dim H 2.L; M Q/ C dim H 2.Q; M/L C dim H 1.L; H 1.Q; M//:

Since G is generated by Q and the radical of the opposite parabolic, by replacing
P by its opposite, we may assume that dim M Q � .1=2/.dim M/, and so by the
result for SL.3/, dim H 2.L; M Q/ � .1=2/ dim M .

Consider H 2.Q; M/ as an L-module. By taking a P -composition series for M ,
it suffices to bound dim H 2.Q; V /L where V is an irreducible FP -module. By
Lemma 3.16 we have the exact sequence,

0 ! Hom.Q; V /L ! H 2.Q; V /L ! Hom.^2.Q/; V /L

Since Q is an irreducible FL-module, the second term either is zero or is isomor-
phic to EndL.Q/ Š Fq and so has dimension .dim V /=3. Next consider ^2.Q/

over Fp . Note that Q ˝Fp
Fq is the sum of Galois twists Qi ; 1 � i � e as

an FqL-module. The exterior square will be the sum of all Qi ˝ Qj ; i < j

plus the sum of all ^2Qi . We note that these are all irreducible and nonisomor-
phic as FqL-modules. Since none of them is isomorphic to Q, it follows that if
V D Q, then dim H 2.Q; V /L � .dim V /=3. So assume this is not the case. Thus,
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Hom.^2.Q/; V /L D 0 unless V is isomorphic to one of Qi ˝ Qj or ^2.Qi / If V is
one of these modules, then Hom.^2.Q/; V /L Š EndL.V / and so has dimension at
most .dim V /=3. Thus, H 2.Q; V /L has dimension at most .dim V /=3.

Finally, consider the far right term of the sequence above. Again, we can take a
P -composition series for M and consider H 1.L; H 1.Q; V // for V an irreducible
FP -module. Now H 1.Q; V / D Hom.Q; V / (over Fp). Let T D Z.L/. By Corol-
lary 3.12, H 1.L; H 1.Q; V // D H 1.L; H 1.Q; V /T /. Then dim H 1.Q; V /T �
3 dim V . So applying Theorem 7.1, we see that dim H 1.L; H 1.Q; V // � dim V .
Thus, dim H 2.G; M/= dim M < 1=2 C 1=3 C 1 < 2 as required.

Theorem 7.6. Let G D SL.4; q/; q D pe . Let F D Fr for r a prime. If M is an
irreducible F G-module, then dim H 2.G; M/ < 2 dim M .

Proof. By the previous result we may assume that r ¤ p.
Let R be a Sylow r-subgroup. We consider various cases.
First suppose that r > 3, whence R is abelian. If r jj .q � 1/, then R � J , the

monomial group J WD T:S4 where T is a split torus. Since r does not divide jS4j,
Lemma 3.8 and Corollary 3.12 imply that dim H 2.J; M/ � dim H 2.T; M/S4 . It
suffices to prove the inequality for W irreducible for J . If T is not trivial on W ,
then H 2.J; W / D 0. If T is trivial on W , then by Lemma 3.16, dim H 2.T; W / �
dim HomG.T; W / C dim HomG.^2.T /; W /. Note that the only irreducible quotient
of T is the 3-dimensional summand of the permutation module. Similarly, the only
irreducible quotient of ^2.T / is the same module. So if W is not that module,
H 2.J; W / D 0. If W is that module, then each term on the right in the above
inequality is 1 and so dim H 2.J; W / � 2 < 3 D dim W .

If r > 3 and does not divide q�1, then R has rank at most 2. If R is cyclic, the result
holds by Lemma 3.5. If not, then R is contained in the stabilizer of a 2-space. The rad-
ical Q of this parabolic has fixed space of dimension at most .dim M/=2 (since Q and
its opposite generate G). Lemma 3.8 together with the fact that dim H 2.R; F / D 3

gives dim H 2.R; M/ � .3=2/.dim M/, and the result holds.
Suppose r D 3. If 3 does not divide q�1, then R is abelian and stabilizes a 2-space

and the argument above applies. So suppose that 3 jj .q � 1/. Then R fixes a 1-space
and 3-space, and so is contained in the corresponding parabolic P D QL. We may
assume that dim M Q � .dim M/=2. Thus, dim H 2.P; M/ � dim H 2.L; M Q/.

By the result for SL.3; q/ (Theorem 7.4), we see that H 2.J; M Q/ has dimension
at most .3=2/.dim M Q/ where J is the derived subgroup of L. So

dim H 2.L; M Q/ � dim H 2.L=J; M QL/ C dim H 2.J; M Q/

C dim H 1.L=J; H 1.J; M Q//:

The terms on the right are bounded by .dim M/=2, .3=4/ dim M and .dim M/=4,
whence dim H 2.G; M/ < 2 dim M .
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Finally, consider the case r D 2. If q D 3, see [42]. So assume that q � 5.
We work over an algebraically closed field. If M is the trivial module, then
dim H 2.G; F / D 0 (since the Schur multiplier of SL.4; q/ is trivial). So assume
that M is not trivial. By computing orders, we see that R is contained in H , the stabi-
lizer of a pair of complementary 2-spaces. Let L D L1 � L2 D SL.2; q/ � SL.2; q/.
Note that L is normal in H , and H=L is a dihedral group of order 2.q � 1/.

Let V be an irreducible H -module. If V L D 0, let W be an irreducible L-sub-
module of V . So W D W1 ˝ W2 with Wi an irreducible Li -module. If each Wi is
nontrivial, then by Lemma 3.10, H 1.L; V / D 0, and so by Lemma 3.11, it follows
that dim H 2.H; V / � dim H 2.L; V / � .dim V /=4. If W1 is nontrivial and W2 is
trivial, then V is an induced module, and so H 2.H; V / Š H 2.X; D/ where X=L is
cyclic and L2 is trivial on D. Then by Lemma 3.8,

dim H 2.X; D/ � dim H 2.L; D/ C dim H 1.X=L; H 1.L; D//:

Then dim H 2.L; D/ D dim H 2.L1; D/ � dim D � .dim V /=2. Furthermore,
we know that dim H 1.X=L; H 1.L; D// � dim H 1.L; D/ D dim H 1.L1; D/.
By (1.2), dim H 1.L1; D/ � .dim D/=2 � .dim V /=4. Thus, dim H 2.H; V / �
.3=4/.dim V /.

If V is trivial for L, then by Lemma 3.8, dim H 2.H; V / � dim H 2.H=L; V / C
dim H 2.L; V / C dim H 1.H=L; H 1.L; V //. Since L is perfect and since the
Schur multiplier of L is trivial, it follows by Lemma 3.9 that dim H 2.H; V / �
dim H 2.H=L; V /. Since H=L is dihedral, by Corollary 3.12 it follows that ei-
ther H 2.H=L; V / D 0 or V is trivial. It is easy to see that H 2.H=L; F2/ is
3-dimensional. It is straightforward to see that G can be generated by two conjugates
of an odd order subgroup of L, whence H can have at most .dim M/=2 trivial compo-
sition factors by Lemma 3.19. Thus, dim H 2.H; M/= dim M � .3=2/ C .3=8/ < 2.

8. SL: the general case

We handle SL.n/ by means of a gluing argument. This is a variation of the presen-
tations given in [21] and [22]. Note also that the proposition below applies in either
the profinite or discrete categories. The key idea is that it suffices to check relations
on subgroups generated by pairs of simple root subgroups – this is a consequence of
the Curtis–Steinberg–Tits presentation (see [13]). We will also use this method to
deduce the result for groups of rank at least 3 from the results on alternating groups
and on rank 2 groups.

We state the Curtis–Steinberg–Tits result in the following form:

Lemma 8.1. Let G be the universal Chevalley group of a given type of rank at least 2

over a given field. Let … be the set of simple positive roots of the corresponding Dynkin
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diagram and let Lı be the rank one subgroup of G generated by the root subgroups Uı

and U�ı for ı 2 …. Let X be a group generated by subgroups Xı ; ı 2 …. Suppose
that 	 W X ! G is a homomorphism such that 	.Xı/ D Lı and 	 is injective on
hX˛; Xˇ i for each ˛; ˇ 2 …. Then 	 is an isomorphism.

Let X and Y be two disjoint sets of size 2. Set G D SL.n; q/ D SL.V / for
n > 4. Let e1; : : : ; en be a basis for V . Let hX j Ri be a presentation for An (acting
on the set f1; : : : ; ng) and hY j Si a presentation for SL.4; q/ acting on a space W that
is the span of e1; : : : ; e4 (viewing these either as profinite presentations or discrete
presentations).

Let G1 be the subgroup of G consisting of the elements which permute the elements
of the basis as even permutations. Let G2 be the subgroup of G that acts trivially on
ej ; j > 4 and preserves the subspace generated by e1; : : : ; e4. Let L be the subgroup
of SL.4; q/ leaving the span of fe1; e2g invariant and acting trivially on e3 and e4.
So L Š SL.2; q/. Let S Š A4 be the subgroup of SL.4; q/ consisting of the even
permutations of e1; : : : ; e4. Pick generators u; v of S where u D .e1 e2/.e3 e4/ and
v D .e1 e2 e3/. Note that u normalizes L. Choose a 2 L such that L D ha; aui
(e.g., we can take a to be almost any element of order q C 1).

Let T Š A4 be the subgroup of An fixing all j > 4. In T , let u0 D .12/.34/ and
v0 D .123/. Let K Š An�2 be the subgroup of An fixing the first two basis vectors.
Let b and c be any generators for K.

Let J be the group generated by X [ Y with relations R; S , u D u0, v D v0,
Œa; b� D Œa; c� D 1. Let J1 � J be the subgroup generated by X , and J2 the subgroup
generated by Y .

There clearly is a homomorphism � W J ! G determined by sending Ji to Gi for
i D 1; 2 (where we send X to the corresponding permutation matrices in G and Y to
the corresponding elements in G2 – all relations in J are satisfied and so this gives
the desired homomorphism). In particular, this shows that Ji Š Gi for i D 1 and 2

and so we may identify Gi and Ji . In particular, u and v are words in Y and u0; v0
are words in X .

Proposition 8.2. J Š G.

Proof. As we noted above, there is a surjection � W J ! G that sends J1 to G1 and
J2 to G2. It suffices to show that � is an isomorphism. We also view a; b and c as
elements of J , and L as a subgroup of J .

We first show that ŒK; L� D 1 in J . By the relations, we have that Œa; K� D 1.
Since u0 normalizes K and u D u0, we see that 1 D Œau; Ku0

� D Œau; K�. Since
L D ha; aui, ŒK; L� D 1. Set E WD hK; u0i Š Sn�2 � An. Since u normalizes L,
we see that E does as well. Note that E is precisely the stabilizer in An of the subset
f1; 2g. This is a maximal subgroup of An, and since An does not normalize L (since
�.An/ does not normalize �.L/ in G), it follows that E D NAn

.L/ (in J ).
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Let � be the set of conjugates of L under An in J . By the previous remarks, j�j D
ŒAn W Sn�2� D n.n � 1/=2 and moreover, there is an identification between � and
the subsets of size 2 of f1; : : : ; ng. Let Li;j denote the conjugate of L corresponding
to the subset fi; j g. Note that �.Li;j / is the subgroup of G that preserves the 2-space
fei ; ej g and acts trivially on the other basis vectors of V .

Let 
 be the orbit of L under A4. Note that j
j D 6 and 
 corresponds to the two
element subsets of f1; 2; 3; 4g. Since An is a rank 3 permutation group on �, any pair
of distinct conjugates of L in � is conjugate to either the pair fL; L2;3g or fL; L3;4g.

Suppose that L1 and L2 are two of these conjugates. By the above remarks, they
are conjugate by some element in the group to L and M D Lx for some x 2 A4.
In particular, we see that M is the subgroup of SL.4; q/ fixing the 2-space generated
by ex.1/ and ex.2/ and fixing the vectors ex.3/ and ex.4/. Since we are now inside
SL.4; q/, we see that either ŒL; M� D 1 or L and M generate an SL.3; q/ � SL.4; q/.
Since � is injective on SL.4; q/, � is injective on hL; M i and so is injective on the
subgroup generated by hLh1 ; Lh2i for any elements h1; h2 2 An.

Therefore, by the Curtis–Steinberg–Tits relations (see Lemma 8.1), N D hfLg j
g 2 Angi Š G, and indeed � W N ! G is an isomorphism.

It suffices to show that J D N . Since An normalizes N and since SL.4; q/ � N

(SL.4; q/ contains the A4 conjugates of L and these generate SL.4; q/), it follows
that N is normal in J . Clearly, SL.4; q/ is trivial in J=N and since An \ N � A4,
it follows that An � N as well. Thus, J D N and the proof is complete.

Since L and K are 2-generated, J is presented by 4 generators and jRj C jS j C 4

relations.
By Theorem 6.2, we have profinite presentations for An with 4 relations. By

Theorems 7.5 and 7.6, SL.4; q/ has a profinite presentation with 3 relations. Thus
we have a profinite presentation for SL.n; q/ with 4 generators and 4 C 3 C 4 D 11

relations. Using Lemma 3.15, we obtain:

Corollary 8.3. Let G D SL.n; q/ with n � 5. Then G has a profinite presentation
on 2 generators and 9 relations. In particular, Or.G/ � 9.

Theorem 8.4. Let G be a quasisimple group that surjects on PSL.n; q/. Let F be a
field. Then

(1) Or.G/ � 9; and

(2) dim H 2.G; M/ � 8:5 dim M for any F G-module M .

Proof. If SL.n; q/ has trivial Schur multiplier, then (1) follows by Corollary 4.2
and the previous result. This is the case unless .n; q/ D .2; 4/; .2; 9/; .3; 2/; .3; 4/

or .4; 2/ [16, p. 313]. In those cases, we have a smaller value for Or.SL.n; q// and
Corollary 4.2 gives (1). Now (2) follows from (1) by (1.4).
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9. Low rank groups

In this section, we consider the rank one and rank two finite groups of Lie type. We
also consider some of the rank three groups which are used for our gluing method.

The method for the low rank groups is fairly straightforward. With more work,
one can obtain better bounds. As usual, we will use Lemma 3.6 without comment.
We first consider the rank one groups.

Lemma 9.1. Let G be the universal cover of a rank one simple finite group of Lie
type.

(1) If G D SL.2; q/, then h.G/ � 1.

(2) If G D Sz.q/; q D 22kC1 > 2, then h.G/ � 1.

(3) If G D SU.3; q/; q > 2, then h.G/ � 2.

(4) If G D <.q/; q D 32kC1 > 3, then h.G/ � 3.

Proof. Let R be a Sylow r-subgroup of G for some prime r . Let F D Fr .
(1) is proved in the previous section and (2) is proved in [50].
Consider G D SU.3; q/ with q D pe . First suppose that p ¤ r . If r ¤ 3, then

R is either cyclic or stabilizes a nondegenerate subspace and so embeds in GU.2; q/.
We use the result for SL.2; q/ and Lemma 3.8 to deduce the result.

If 3 does not divide q C 1, the above argument applies to r D 3. Suppose that
r D 3 jj .q C 1/. Then R is contained in the stabilizer of an orthonormal basis and we
argue precisely as we did for SL.3; q/ in Theorem 7.4.

So assume that p D r and R � B , a Borel subgroup. Write B D TR with T

cyclic of order q2 � 1. Let Z D Z.R/ of order q. If q D 4, one computes directly
that the bound holds. So assume that q > 4. Then T acts irreducibly on Z and on
R=Z. By Lemma 3.8, for V an irreducible FpB-module (i.e. a T -module),

dim H 2.B; V / � dim H 2.B=Z; V /Cdim H 2.Z; V /BCdim H 1.B=Z; H 1.Z; V //:

Similarly, dim H 2.B=Z; V / � dim H 2.R=Z; V /T . Since V is a trivial R-module,
H 2.R=Z; V /T D 0 unless V Š R=Z or V is a constituent of ^2.R=Z/. We argue
as usual to show that ^2.R=Z/ is multiplicity free (and does not surject onto R=Z).
It follows that dim H 2.R=Z; V /T � dim EndT .V / Š V (as vector spaces). The
same argument shows that either H 2.Z; V /B D 0 or V Š Z or V is a constituent
of ^2.Z/, and in those cases H 2.Z; V /B Š V (as vector spaces). Finally, note that
H 1.B=Z; H 1.Z; V // Š H 1.B=Z; V �/, and so is either 0 or has dimension equal
to dim V if V � Š R=Z. So we see that each term is at most dim V , and at most two
of them can be nonzero. Thus, dim H 2.B; V / � 2 dim V .

Finally, consider G D <.32kC1/; k > 1. See [46, 47] for properties of G.
If r D 2, then R is contained in H WD C2 � PSL.2; q/. Let V be a nontrivial irre-

ducible FH -module. By Lemma 3.10, H 2.H; V / Š H 2.PSL.2; q//. Similarly, if V
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is trivial, Lemma 3.10 implies that H 2.H; V / Š H 2.C2; F / ˚ H 2.PSL.2; q/; F /

and so is 2-dimensional. By Lemma 7.3, it follows that dim H 2.H; V / � 2 dim V .
If r > 3, then R is cyclic and the result holds by Lemma 3.5. If r D 3, then a
Borel subgroup is TR where T is cyclic of order q � 1. Moreover, there are normal
T -invariant subgroups 1 D R0 < R1 < R2 < R3 D R such that T acts irreducibly
on each successive quotient (acting faithfully on the first and last quotients and acting
via a group of order .q �1/=2 on the middle quotient). Furthermore, R2 is elementary
abelian. Let V be an irreducible B-module. Then, by Lemma 3.8,

dim H 2.B; V / � dim H 2.B=R2; V / C dim H 2.R2; V /B

C dim H 1.B=R2; H 1.R2; V //;

and
dim H 2.B=R2; V / � dim H 2.R3=R2; V /B :

By Lemma 3.17 and Lemma 3.16, it follows that dim H 2.R3=R2; V /B � dim V

and dim H 2.R2; V /B � dim V . Finally, consider the final term on the right. We can
write R2 D W.˛/ ˚ W.ˇ/ as a direct sum of the T -eigenspaces with characters ˛

and ˇ (of orders q � 1 and .q � 1/=2). Write V D W.�/ as a T -module. Then
H 1.R2; V / is a direct sum of modules W.˛�1� 0/ and W.ˇ�1� 0/ where � 0 is a
Frobenius twist of � . Since T has order coprime to the characteristic, we see that
dim H 2.B=R2; V / will be the multiplicity of R3=R2 D W.˛/ in H 1.R2; V /. The
comments above show that this multiplicity is 0 unless � is a product of two twists
of ˛ or a twist of ˛ times a twist of ˇ. It follows that the multiplicity in these cases
is 1 and dim H 2.B; V / � dim V . Thus, dim H 2.B; V / � 3 dim V as required.

We now consider the groups of rank 2, subdividing them into two classes. The
classical groups of rank 2 will arise in the consideration of higher rank groups and
so we need better bounds. The remaining cases do not occur as Levi subgroups in
higher rank groups and so do not impact any of our gluing arguments.

Lemma 9.2. (1) If G D SL.3; q/, then h.G/ � 3=2.

(2) If G D SU.4; q/, then h.G/ � 9=4.

(3) If G D SU.5; q/, then h.G/ � 4.

(4) If G D Sp4.q/, then h.G/ � 3.

Proof. We handle the various groups separately proving somewhat better results. The
result for SL.3; q/ is a special case of Theorem 7.4. Let Fq be the field of definition of
the group with q D pe . Let r be a prime, R be a Sylow r-subgroup of G and F D Fr .
If M is a trivial F G-module, the result is clear (because we know the Schur multi-
plier [16, pp. 312–313]). So it suffices to consider nontrivial irreducible FG-modules.
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Case 1. G D SU.4; q/.
If r ¤ p does not divide q, then the argument is identical to that given for

G D SL.4; q/. Suppose that r D p. Let P be the stabilizer of a totally singular
2-space. So P D LQ where L D GL.2; q2/ and Q is an irreducible FqL-module of
order q4. By Lemma 3.8,

dim H 2.G; M/ � dim H 2.L; M Q/C dim H 2.Q; M/L C dim H 1.L; H 1.Q; M//:

If q D 2; 3, we apply [42]. So assume that q > 3. Let Z D Z.L/. By Corol-
lary 3.12, H 1.L; H 1.Q; M// D H 1.L; H 1.Q; M/Z/ D H 1.L; HomZ.Q; M//.
Since dim H 1.SL.2; q/; W / � .dim W /=2 by (1.2), dim H 1.L; H 1.Q; M// �
dim M . By Theorems 7.2 and 7.3, dim H 2.SL.2; q/; W / � .dim W /=2 and so
dim H 2.L; M Q/ � .dim M Q/=2 � .dim M/=4. Since ^2.Q/ is multiplicity free
(arguing exactly as in Lemma 3.17), the middle term is certainly at most dim M and
so dim H 2.G; M/ � .9=4/.dim M/.

Case 2. G D SU.5; q/.
First consider the case r ¤ p and r > 2. If r does not divide q C 1, then either

R is cyclic or R embeds in SU.3; q/ or SU.4; q/ and the result follows.
Suppose that r jj.qC1/. Then R is contained in H , the stabilizer of an orthonormal

basis. In particular, H has a normal abelian subgroup N that is homogeneous of rank
4 with H=N D S5. Let V be an irreducible FH -module. By Lemma 3.8,

dim H 2.H; V / � dim H 2.S5; V N / C dim H 2.N; V /S5 C dim H 1.S5; H 1.N; V //:

If N acts nontrivially on V , then Lemma 3.12 implies that H 2.H; V / D 0. So assume
that this is not the case.

Since S5 has a cyclic Sylow r-subgroup, the first term on the right is at most 1

by Lemma 3.5. Since N does not have a 1-dimensional quotient (as an S5-module),
it follows that dim H 2.H; Fr/ � 1. So we may assume that dim V > 1, and so
dim V � 3.

Recall that dim H 2.N; V /S5 � dim HomS5
.N; V /Cdim HomS5

.^2N; V /. So if
V is a not a quotient of either N or ^2.N /, then dim H 2.H; V / � 1 � .1=3/ dim V .
So assume that V is a quotient of either N or ^2.N /.

If r D 5, the only quotients of N and ^2.N / are 3-dimensional. Since dim N D 4

and dim ^2.N / D 6, it follows that dim H 2.H; V / � 4 D .4=3/ dim V .
So assume that r ¤ 5. If V is a quotient of N , then V is the irreducible summand of

the permutation module for S5. Thus, H 2.S5; V / D 0 by Lemma 3.4. By dimension,
it is clear that dim HomS5

.N; V / C dim HomS5
.^2N; V / � 2, whence the result.

If V is a nontrivial quotient of ^2.N / and is not a quotient of N , then the same
argument shows that dim H 2.H; V / � 3.

H 2.S5; V / D 0 if V is 1-dimensional and dim V � 3 otherwise, this implies that
dim H 2.S5; V N / � .dim V /=3. This same argument shows that dim H 1.S5; W / �
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.dim W /=3 for any FS5-module and so H 1.S5; H 1.N; V // � .dim N /.dim V /=3 �

.4=3/.dim V /.
Consider the case that r D 2 ¤ p. Then R � H WD GU.4; q/. We use the result

for N WD SU.4; q/ and Lemma 3.8. So

dim H 2.G; M/ � dim H 2.H=N; M N / C dim H 2.N; M/H

C dim H 1.H=N; H 1.N; M//:

This gives dim H 2.G; M/ � 4 dim M as above.
Finally, consider the case that r D p. Let P be the stabilizer of a totally singular

2-space. Then P D LU where L is the Levi subgroup of P and U is the unipotent
radical. Let J D SL.2; q2/ � L Š GL.2; q2/ and Z D Z.L/ cyclic of order q2 � 1.
Also, note that W D ŒU; U � is irreducible of order q4 and X WD U=W is an irreducible
2-dimensional module (over Fq2/ and that W is an irreducible 4-dimensional module
over Fq – it is isomorphic to X ˝ X .q/ (which is defined over Fq).

Let V be an irreducible FP -module. By Lemma 3.8,

dim H 2.P; V / � dim H 2.P=W; V / C dim H 2.W; V /P

C dim H 1.P=W; H 1.W; V //:

Consider the first term on the right hand side of the inequality. By Lemma 3.8,

dim H 2.P=W; V / � dim H 2.L; V / C dim H 2.U=W; V /L

C dim H 1.L; H 1.U=W; V //:

Note that P=W is very similar to a maximal parabolic subgroup of SL.3; q2/. Arguing
precisely as in that case, we see that dim H 2.P=W; V / � dim V .

Now consider the middle term. It is straightforward to see (arguing as in the
proof of Lemma 3.17) that ^2.W / is multiplicity free and has no composition factors
isomorphic to W , whence the middle term has dimension at most dim V .

Finally, consider the last term on the right. Set Y D H 1.W; V / Š W � ˝ V . By
Lemma 3.13, dim H 1.P=W; Y / � dim H 1.L; Y /Cdim HomL.U=W; Y /. By Corol-
lary 3.12, H 1.L; Y / Š H 1.L; Y Z/. Note that dim Y Z � 2 dim V and so by (1.2),
it follows that dim H 1.L; Y / � dim H 1.J; Y Z/ dim V . Thus, HomL.U=W; Y / Š
HomL.U=W ˝ W; V /.

Let � be the fundamental dominant weight for J . So U=W D X D X.�/ (the
natural module over Fq2). Note that U is an FqJ -module satisfying U ˝Fq

˝Fq2 Š
X ˝F

q2
X .q/. It is straightforward to see that U=W ˝ W modulo its radical is

multiplicity free. Thus HomL.U=W; Y / is either 0 or is isomorphic to EndL.V /, and
so has dimension at most dim V . It follows that dim H 2.P; V / � 4 dim V .
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Case 3. G D Sp.4; q/.
If r > 3 and r ¤ p, then R is abelian of rank 2, whence dim H 2.G; M/ �

3 dim M by Lemma 3.16.
If 3 � r ¤ p, then R is contained in J , the stabilizer of a pair of orthogonal

nondegenerate 2-spaces. If r D 3, this implies that

dim H 2.G; M/ � dim H 2.SL.2; q/ � SL.2; q/; M/ � dim M

by § 7 and Lemma 3.10. If r D 2, then this shows that dim H 2.J 0; M/ � dim M .
By Lemma 3.8,

dim H 2.J; M/ � dim H 2.J=J 0; M J 0

/ C dim H 2.J 0; M/J

C dim H 1.J=J 0; H 1.J 0; M//;

and so dim H 2.J; M/ < 3 dim M .
If p D r , then R � P , the stabilizer of a totally singular 2-space. Write P D LQ

where L is a Levi subgroup and Q the unipotent radical. Note Q is elementary abelian
of order q3. By Lemma 3.8,

dim H 2.P; M/ � dim H 2.L; M Q/ C dim H 2.Q; M/L C dim H 1.L; H 1.Q; M//:

The first term on the right is at most dim M Q (by the result for SL.2; q/) and is at most
.dim M/=2. Arguing as for SL.3; q/, dim H 1.L; H 1.Q; M// � .3=2/ dim M . By
Lemma 3.16, the middle term is at most dim M , whence dim H 2.G; M/ < 3 dim M .

We now consider the remaining rank 2 groups.

Lemma 9.3. Let G be a quasisimple finite group of Lie type and rank 2. Then
Or.G/ � 6.

Proof. By the preceding lemma, we may assume that G is one of G2.q/; 3D4.q/

or 2F4.q/0. Let p be the prime dividing q. Note that p D 2 in the last case.
Since G2.2/ Š PSU.3; 3/, we assume that q > 2 if G D G2.q/. We also note

that a presentation is known for 2F4.2/0 which gives the result (cf. [51]), so we also
assume that q > 2 in that case.

Let r be a prime, F a field of characteristic r and M an irreducible F G-module.
Let R be a Sylow r-subgroup of G.

Case 1. G D G2.q/, q > 2.
If r ¤ p and r > 3, then R is contained in a maximal torus (since the order of R

is prime to the order of the Weyl group) and so R is abelian of rank at most 2, whence
dim H 2.G; M/ � 3 dim M by Lemma 3.16. If p ¤ r � 3, then R is contained
in L with L Š SL.3; q/:2 or SU.3; q/:2 (for example, noting that the only prime
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dividing the indices of both of these subgroups is p). If r ¤ 2, the result follows
from the corresponding result for L. If r D 2, by Lemma 3.8 dim H 2.L; V / �
dim H 2.L=J; V J / C dim H 2.J; V /L C dim H 1.L=J; H 1.J; V //, where J is the
derived subgroup of L and V is an FL-module. If V is trivial, then this gives
dim H 2.L; V / � 1. Otherwise, V J D 0, and dim H 2.L; V / � dim H 2.J; V / C
dim H 1.J; V / < 4 dim V . So dim H 2.G; M/ � 4 dim M .

Now assume that r D p. Let R � P be a maximal parabolic subgroup. Write
P D LQ where L is a Levi subgroup and Q is the unipotent radical. We may choose
P so that Q has a normal subgroup Q1 with Q=Q1 and Q1 each elementary abelian
(of dimension 2 or 3 over Fq). Let V be an irreducible FP -module. It suffices by
Lemma 3.6 to prove the bound in the lemma for P .

By Lemma 3.8,

dim H 2.P; V / � dim H 2.L; V / C dim H 2.Q; V /L C dim H 1.L; H 1.Q; V //:

Note that X WD H 1.Q; V / D Hom.Q; V / D Hom.W; V /, where W D Q=Q1 has
order q2. If q is prime, then dim X � 2 dim V , and so by (1.2), dim H 1.L; X/ �
dim V . If q is not prime, then Z D Z.L/ acts nontrivially on W and so H 1.L; X/ D
H 1.L; XZ/ by Corollary 3.12. Since dim XZ � 2 dim V , the same bound holds
in this case. By the result for SL.2; q/ (Theorems 7.2 and 7.3), dim H 2.L; V / �
.1=2/.dim V /. So to finish this case, it suffices to show that dim H 2.Q; V /L �
.5=2/.dim V /.

By Lemma 3.8,

dim H 2.Q; V / � dim H 2.Q=Q1; V / C dim H 2.Q1; V /

C dim H 1.Q=Q1; H 1.Q1; V //:

The proof of this inequality (either using a spectral sequence or more directly in [29])
shows that we have the same inequality after taking L-fixed points. Using Lemma 3.16
and arguing as usual, we see that the sum of the first two terms on the right is at most
dim V . Similarly, the right-most term is Hom.Q=Q1 ˝ Q�

1 ; V / and the dimension
of the L-fixed points is at most dim V . The result follows.

Case 2. G D 3D4.q/.
First suppose r ¤ p. If p ¤ r > 3, then R is contained in a maximal torus and

is abelian. By inspection, R has rank at most 2 and so dim H 2.G; M/ � 3 dim M .
If r D 3, then R � H , the central product of SL.2; q/ B SL.2; q3/, whence we can
use the bounds in § 7 (obtaining a bound of 4 dim M ). If r D 2, then R � NG.H/

and H has index 2 in NG.H/. The bound for H shows that dim H 2.NG.H/; M/ �
5 dim M .

If r D p, then R � P D LQ with P a maximal parabolic, Q its unipotent
radical and L a Levi subgroup with simple composition factor SL.2; q3/. Then
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jZ.Q/j D q and Q=Z.Q/ is the tensor product of the three twists of the natu-
ral module for SL.2; q3/ (over Fq/). We argue as in the previous case to see that
dim H 2.G; M/ � 5 dim M .

Case 3. G D 2F4.q/; q > 20.
First suppose that r > 3. Then R is abelian of rank at most 2 (by inspection of

the maximal tori – see [38]), and so by Lemma 3.16 dim H 2.G; M/ � 3 dim M .
Note that G contains a subgroup H Š SU.3; q/ (see [38]). If r D 3, then R � H

and so dim H 2.G; M/ � dim H 2.SU.3; q/; M/ � 3 dim M by Lemma 9.1.
If r D p D 2, then R � P D LQ with P a maximal parabolic, L D Sz.q/�Cq�1

its Levi subgroup and unipotent radical Q. There is a sequence of normal subgroups
Q1 < Q2 < Q with elementary abelian quotients of order q; q4 and q5 respectively.
We argue as above and conclude that dim H 2.G; M/ � 5 dim M .

We consider two families of rank three groups that are used in the bounds for
F4.q/ and 2E6.q/.

Lemma 9.4. If G D Sp.6; q/ or SU.6; q/, then h.G/ � 6.

Proof. The proofs are similar to the rank 2 cases and since the bounds are quite weak,
we only sketch the proof.

Let F be a field of characteristic r . Let R be a Sylow r-subgroup of G.
First consider G D Sp.6; q/ with q D pa.
If p ¤ r � 5, then R is abelian of rank at most 3, whence dim H 2.R; M/ �

6 dim M by Lemma 3.16.
If r D 3 ¤ p, then R is a contained in the stabilizer of a totally singular 3-space

and so R � GL.3; q/ and the result follows by the result for SL.3; q/ and the standard
argument. If r D 2 ¤ p, then R � Sp.4; q/ � Sp.2; q/ and we argue as usual.

If r D p, then R � P , the stabilizer of a totally isotropic 3-space. Then P D LU

where L D GL.3; q/ is the Levi subgroup and U is elementary abelian of order q6

(and irreducible for L when q is odd). We argue as usual.
Now suppose that G D SU.6; q/ with q D pa. First consider the case that p ¤ r .

If r > 3 does not divide q C 1, then R is abelian of rank at most 3, whence the result
holds. If r D 3 does not divide q C 1, then R � GL.3; q2/ and the result follows.

If 3 � r does divide q C 1, then R � S WD A:S6 where A is isomorphic to C 5
qC1.

The result now follows by using the bounds for S6 and Lemma 3.8.
If r D 2 ¤ p, then R stabilizes a nondegenerate 4-space. So we use the results

for SU.2; q/ and SU.4; q/ and argue as usual.
If r D p, then R � P , the stabilizer of a totally singular 3-space. Note P D LQ

where Q is the unipotent radical and L the Levi subgroup. Note Q is an irreducible
L-module of order q9 and L Š GL.3; q2/. We argue as usual.
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10. Groups of Lie type – the general case

Here we essentially follow the argument in [21] but use profinite presentations.

Theorem 10.1. Let G be a quasisimple finite group with G=Z.G/ a group of Lie type.
Then Or.G/ � 18.

Proof. Let G be the simply connected group of the given type of rank n. By the
results of the previous section, we may assume that n � 3. Consider the Dynkin
diagram for G. Let … be the set of simple roots and write … D f˛1; : : : ; ˛ng.

First suppose that G is a classical group. We assume the numbering of roots is
such that the subsystem f˛1; : : : ; ˛n�1g is of type An�1, ˛n is an end node root and is
connected to only one simple root j̨ in the Dynkin diagram (in the typical numbering
for a Dynkin diagram, j D n � 1 except for type D when j D n � 2).

Let G1 be the subgroup generated by the root subgroups U˙˛i
; 1 � i < n. Let G2

be the rank 2 subgroup generated by the root subgroups U˙˛n
; U˙ j̨

. Let L2 be the
rank 1 subgroup corresponding to the simple root ˛n. Let L1 be the subgroup of G1

generated by the root subgroups that commute with L2. Note that L1 is an SL unless
G has type Dn in which case L2 is of type SL.2/ � SL.n � 2/. Let L be the rank one
subgroup generated by U˙ j̨

. Let hX j Ri be a presentation for G1 and hY j Si be a
presentation for G2 with X and Y disjoint.

We give a presentation for a group J with generators X [ Y and relations R; S ,
ŒL1; L2� D 1 and we identify the copies of L in G1 and G2. More precisely, take
two generators for each Li , express them as words in X and Y and impose the
four commutation relations. Similarly, take our two generators for L and take two
words each in X and Y which map onto those generators of L in G and equate the
corresponding words.

We claim J Š G. Clearly, J surjects onto G. Thus, the subgroup generated by
X in this presentation can be identified with G1 and the subgroup generated by Y can
be identified with G2. Now J is generated by the simple root subgroups contained
in G1 or G2. Any two of the these root subgroups (and their negatives) satisfy the
Curtis–Steinberg–Tits relations (for either they are both in G1 or G2 or they commute
by our relations since ŒL1; L2� D 1). By Lemma 8.1 J is a homomorphic image of
the universal finite group of Lie type of the given type, and the claim follows.

Note that the number of relations is jRjC jS jC6 (since 4 relations are required to
ensure that ŒL1; L2� D 1 and 2 relations to identify the copies of L) and the number
of generators is jX j C jY j. Using Lemma 3.15 and the fact that G; G1 and G2 are all
2-generated, we see that

Or.G/ � Or.G1/ C Or.G2/ C 6 � 2:

Now G1 Š SL and so satisfies Or.G1/ � 9 by Corollary 8.3, and G2 is either
of type B2 or SU.d; q/ with d D 4 or 5. In particular, Or.G2/ � 5 by Lemma 9.2
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and (1.4). This gives Or.G/ � 18 as required, and also Or.G=Z/ � 18 for any central
subgroup Z of G by Corollary 4.2.

We now consider the exceptional groups. The idea is essentially the same, but we
have to modify the construction slightly. If G D En.q/ with 6 � n � 8, G1 still has
type An�1, G2 has type A2, but L1 D A2 �An�4, and L1 is generated by 2 elements,
there is no difference in the analysis of the presentation. Thus, Or.G/ � 18.

If G D F4, we take G1 D C3 and G2 D A2. Then L1 D A1. Similarly, if
G D 2E6.q/, then G1 D SU.6; q/ and G2 is of type A2. By Lemma 9.4, Or.G1/ � 7.
Since Or.G2/ � 3, we see that Or.G/ � 3 C 7 C 2 C 4 � 2 D 14.

Now let G be a quasisimple group with G=Z.G/ a simple finite group of Lie type.
If G is a homomorphic image the universal Chevalley group, then we have shown
that in all cases Or.G/ � 18. We need to consider the possibility that G has a Schur
multiplier whose order divides the characteristic of G. If G=Z.G/ is isomorphic to
an alternating group, we have already proved the result. By [16, p. 313] the only
groups G=Z.G/ that remain to be considered are PSL.3; 2/, PSL.3; 4/, PSU.4; 2/,
PSU.6; 2/; Sp.6; 2/, Sz.8/, P�C.8; 2/, G2.4/, F4.2/ and 2E6.2/. In all these cases,
we have shown that Or.G=Z/ � 14 Thus, Or.G/ � 15 by Corollary 4.2.

11. Sporadic groups

Now let G be a quasisimple sporadic group and M an irreducible FpG-module. In
this section, we prove:

Theorem 11.1. Let G be a finite quasisimple group with G=Z.G/ a sporadic simple
group. Then G has a profinite presentation with 2 generators and 18 relations, and
dim H 2.G; M/ � .17:5/ dim M for any F G-module M .

One can certainly prove better bounds. We use the main result of Holt [30] to see
that dim H 2.G=Z; M/ � 2ep.G=Z/ dim M , where pep.G/ is the order of a Sylow
p-subgroup of G. Also, for many of the groups, there is a presentation with less
than 18 relations (see [51]), whence the results follow (note that in all cases the Schur
multiplier is cyclic [16, p. 313]).

So we only need to deal with those sporadic groups (and their covering groups)
where neither of these arguments suffices. The only cases to consider are p D 2 and
a few cases for p D 3.

In these cases, it is more convenient to work with the simple group rather than the
covering group.

The table below lists the cases that are not covered by Holt’s result or by the
presentations given in [51]. We give the structure of a subgroup H of the simple group
S WD G=Z that contains a Sylow p-subgroup of S in order to apply Lemma 3.6.
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G=Z jZjp p H

Co3 1 2 24 � A8

Co2 1 2 21C8 � Sp.6; 2/

Co1 2 2 211 � M24

He 1 2 26 � 3:S6

Fi22 2 2 210 � M22

Fi23 1 2 2 � Fi22

Fi024 1 2 211 � M24

Suz 2 2 21C6 � U4.2/

J4 1 2 211 � M24

HN 1 2 21C8 � .A5 � A5/:2

Th 1 2 25 � L5.2/

B 2 2 21C22 � Co2

M 1 2 21C24 � Co1

Fi23 1 3 OC.8; 3/ � 3

Fi024 3 3 31C10 � U.5; 2/

B 1 3 31C8 � 21C6 � U.4; 2/

M 1 3 38 � O�.8; 3/

Let G D Co1 and let N D Op.H/.
Note that a Sylow 2-subgroup of M24 is contained in a subgroup isomorphic

to 24A8. Using the results for A8 and the computations in [42], we see that
dim H 2.M24; M/ � dim M . The standard arguments now yield dim H 2.H; M/ �
3 dim M for M an F2H -module where H D 211M24, and therefore we obtain the
same bound for G. Similar computations using the subgroups in the table show that
the results hold in all the remaining cases.

By (1.1), this completes the proof of Theorem 11.1.

12. Higher cohomology

We have seen that dim H k.G; M/ � C dim M for M a faithful irreducible F G-
module and k � 2. In fact, it is unknown whether there is an absolute bound Ck for
dim H k.G; M/ for M an absolutely irreducible F G-module with G simple. It was
conjectured by the first author over twenty years ago that this was the case for k D 1.
Indeed, there are no examples known with dim H 1.G; M/ > 3 for M an absolutely
irreducible F G-module and G a finite simple group. So we ask again:
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Question 12.1. For which k is it true that there is an absolute constant Ck such
that dim H k.G; V / < Ck for all absolutely irreducible F G-modules V and all finite
simple groups G with F an algebraically closed field (of any characteristic)?

See [12] for some recent evidence related to this conjecture.
A slightly weaker version of this question for k D 1 is relevant to an old conjecture

of Wall. His conjecture is that the number of maximal subgroups of a finite group
G is less than jGj. If we consider groups of the form VH with V an irreducible
FpH -module, a special case of Wall’s conjecture (and likely the hardest case is):

Question 12.2. If V is an irreducible FpG-module with G finite, is jH 1.G; V /j <

jGj?

This is true for G solvable [48], and in that case is essentially equivalent to Wall’s
conjecture.

We now give some examples to show that the analog of Theorem C does not hold
for H k , k > 2.

Let F be an algebraically closed field of characteristic p > 0.
Let S be a nonabelian finite simple group such that p divides both the order of S and

the order of its outer automorphism group. Let L be a subgroup of Aut.S/ containing
S with L=S of order p. Let W be an irreducible FS-module with H 1.S; W / ¤ 0.
Note that if x 2 S has order p, then all Jordan blocks of x have size p in any projective
FS-module. In particular, the trivial module is not projective and so H 1.S; W / ¤ 0

for some irreducible module W . Obviously such a W can not be the trivial module.
Let U D W L

S . Then either U is irreducible and H 1.L; U / Š H 1.S; W / ¤ 0 by
Lemma 3.4, or each of the p composition factors of U (as an L-module) is isomorphic
to W as FS-modules. Since H 1.L; U / ¤ 0, some irreducible L-composition factor
of U also has nontrivial H 1 by Lemma 3.3. In either case, we see that there exists an
irreducible faithful FL-module V with H 1.L; V / ¤ 0 and H 1.L; F / Š F .

Let G D L o Ct and let N < G be the direct product L1 � � � � � Lt with Li Š L.
Let X D V ˝ F ˝ � � � ˝ F . So X is an irreducible FN -module.

By Lemma 3.10, for k � 3,

dim H k.N; X/ � dim H 1.L; V / �
 

t � 1

k � 1

!
� cktk�1:

for some constant ck . Thus, for t sufficiently large, dim H k.N; X/ > dktk�1 dim X

for the constant dk WD .ck dim H 1.L; V //=.dim V //.
Similarly, dim H 2.N; X/ D dim H 2.L; V / C .t � 1/ dim H 1.L; V / � t � 1.
Now let M D XG

N . By Lemma 3.4, dim H k.G; M/ D dim H k.N; X/.
We record the following consequence for k D 2.
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Theorem 12.3. Let F be an algebraically closed field of characteristic p > 0. There
is a constant ep > 0 such that if d is a positive integer, then there exist a finite group
G and an irreducible faithful F G-module with dim H 2.G; M/ � ep dim M and
dim M > d .

In particular, we see that dim H 2.G; M/ can be arbitrarily large for M an irre-
ducible faithful F G-module in any characteristic. Another way of stating the previous
result is that for a fixed p,

u.p/ WD lim sup
dim M!1

dim H 2.G; M/

dim M
> 0:

Here we are allowing any finite group G with M any irreducible faithful FpG-module.
The scarce evidence suggests:

Conjecture 12.4. limp!1 u.p/ D 0.

If k > 2, we obtain:

Lemma 12.5. Keep notation as above.

(1) M is an irreducible faithful FpG-module with dim M D t dim X .

(2) dim H k.G; M/ � dktk�2 dim M .

(3) There exists a constant ek > 0 such that dim H k.G; M/ � ek.dim M/k�1.

Proof. Note that M is a direct sum of t nonisomorphic irreducible FN -modules
that are permuted by G and so M is irreducible. Since N is the unique minimal
normal subgroup of G and does not act trivially on M , G acts faithfully on M . Now
(2) follows by the discussion above and by Lemma 3.4. Similarly, (3) follows with
ek D ck=.dim V /k�1.

So we have shown:

Theorem 12.6. Let k be a positive integer. If k � 3, there exist finite groups G and
faithful absolutely irreducible F G-modules M with dim H k.G; M/=.dim M/k�2

arbitrarily large.

Our reduction methods in Section 5.3 give very weak bounds for the dimension
of H k.G; M/ with M faithful and irreducible in terms of the bounds for the simple
groups. We ask whether our examples are the best possible:

Question 12.7. For which positive integers k is it true that there is an absolute con-
stant dk such that dim H k.G; V / < dk.dim V /k�1 for all absolutely irreducible
faithful F G-modules V and all finite groups G with F an algebraically closed field
(of any characteristic)?
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For k D 1, the question reduces to the case of simple groups. Theorem C says
that we can take d2 D 18:5.

13. Profinite versus discrete presentations

In this section, we consider discrete and profinite presentations for finite groups.
Recall that r.G/ (respectively Or.G/) denotes the minimal number of relations required
in a presentation (respectively profinite presentation) of a finite group G. In fact, if
G D F=N is a discrete presentation of G (i.e. F is a free group), then G D OF = xN ,
where OF is the profinite completion of F and xN is the closure of N in OF . So OF = xN
is a profinite presentation for G. Indeed, every profinite presentation of G can be
obtained this way.

Let R D N=ŒN; N � and for a prime p, set R.p/ D N=ŒN; N �N p . So R (resp.
R.p/) is the relation (resp. p-relation) module of G with respect to the given pre-
sentation. Denote by dF .N / the minimal number of generators required for N as a
normal subgroup of F and dG.R/ (resp. dG.R.p// the minimal number of genera-
tors required for R (resp. R.p/) as a ZG-module. Similarly, define Od OF . xN / to be the

minimal number of generators required for xN as a closed normal subgroup of OF .
A theorem of Swan [17, Theorem 7.8] asserts that dG.R/ D maxp dG.R.p//,

and Lubotzky [33] showed that Od OF . xN / D maxp dG.R.p//. So altogether Od OF . xN / D
dG.R/. Moreover, it is shown in [33] that Or.G/ D Od OF . xN / for any minimal presen-
tation of G, i.e. a presentation in which d.F / D d.G/ (see also Lemma 3.15). The
analogous property for discrete presentations of finite groups is not known and fails
for infinite groups (cf. [17, p. 2]).

The long standing open problem whether dF .N / D dG.R/ (see [17, p. 4]) there-
fore has an equivalent formulation:

Question 13.1. Is dF .N / D Od OF . xN /?

A variant of this question is even more interesting:

Question 13.2. Is Or.G/ D r.G/?

Of course, a positive answer to Question 13.1 would imply a positive answer to
Question 13.2, but not conversely.

A weaker version of Question 13.1 is:

Question 13.3. Given a presentation G D F=N D OF = xN of the finite group G, are
there d OF . xN / D dG.R/ elements of N which generate xN as a closed normal subgroup

of OF ?
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In light of the above discussion, it is not surprising that our results in [21] and in the
current paper give better estimates for profinite presentations of finite simple groups
than for discrete presentations. Theorem A ensures that all finite simple groups have
profinite presentations with at most 18 relations. We investigate discrete presentations
in [21] and [22]. In [22], we worry less about the total length of relations and prove:

Theorem 13.4. Every finite simple group, with possible exception of 2G2.32kC1/,
has a presentation with 2 generators and at most 100 relations.

Of course, both 18 and 100 are not optimal and indeed, as we have already ob-
served, for many groups we know much better bounds. One may hope that 4 is the
right upper bound for both types of presentations. Indeed, there is no known obstruc-
tion to the full covering group of a finite simple group having a presentation with 2

generators and 2 relations (see [50]).
Let us now turn our attention to presentations (and cohomology) of general finite

groups.
If G D F=N is simple (and not 2G2.q/) with F free and d.F / D 2, then by

the results of [21], N can be generated, as a normal subgroup of F , by C words for
some absolute constant C (and the total length of the words used can be bounded
in terms of jGj). Mann [39] showed that if every finite simple group can be pre-
sented with O.log jGj/ relations, then every finite group could be presented with
O.d.G/ log jGj/ � O..log jGj/2/ relations. Of course, in [21], we proved that sim-
ple groups (with possible exception of 2G2.q/) can be presented with a bounded
number of relations – but the better bound for simple groups does not translate to a
better bound for all groups. Mann’s argument is valid also in the profinite case and
since there are no exceptions, we have:

Theorem 13.5. Let G be a finite group.

(1) If G has no composition factors isomorphic to 2G2.32kC1/, then G has a pre-
sentation with O.d.G/ log jGj/ relations.

(2) G has a profinite presentation with O.d.G/ log jGj/ relations.

The example of an elementary abelian 2-group shows that one can do no better
in general. Results like the above have been used to count groups of a given order
(or perfect groups of a given order) and also for getting results on subgroup growth.
Fortunately the profinite result is sufficient for these types of results and so the Ree
groups do not cause problems. See [33].

Using the reduction of [5, Theorem 1.4] to simple groups for lengths of presenta-
tions, one sees that:

Theorem 13.6. Let G be any finite group with no composition factors isomorphic
to 2G2.q/. Then G has a presentation of length O..log jGj/3/.
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This is essentially in [5] aside from excluding SU.3; q/ and Suzuki groups (at the
time of that paper it was not known that those groups had presentations with log jGj
relations). As pointed out in [5], the constant 3 in the previous theorem cannot be
improved (by considering 2-groups).

We now give some refinements of these results in the profinite setting. We first
prove some results about H 2.

We need to introduce some notation. Recall that a chief factor X of a finite group
is a nontrivial section A=B of G where B and A are both normal in G and there is
no normal subgroup of G properly between A and B . Clearly X is characteristically
simple and so X is either an elementary abelian r-group for some prime r or X

is isomorphic to a direct product of copies of a nonabelian simple group and G

permutes these factors transitively. There is an obvious definition of isomorphism of
chief factors. An appropriate version of the Jordan–Hölder theorem implies that the
multi-set of chief factors coming from a maximal chain of normal subgroups of G is
independent of the chain.

If X is a nonabelian chief factor, let sp.X/ denote the p-rank of the Schur multiplier
of a simple direct factor of X . So sp.X/ � 2 (and for p > 3, sp.X/ � 1) [16,
pp. 312–313]. Let sp.G/ denote the sum of the sp.X/ as X ranges over the nonabelian
chief factors of G (counting multiplicity). If X is a chief factor of G and is an
elementary abelian p-group, let p̀.X/ D logp jX j. Let p̀.G/ denote the sum of
p̀.X/ as X ranges over the chief factors of G that are p-groups.

Define
hp;1.G/ D maxf1 C dim H 1.G; V /= dim V g;

where V is an irreducible FpG-module. Note that this is always bounded by d.G/C1

(or d.G/ if V is nontrivial) since a derivation is determined by its images on a set of
generators. We can now prove:

Theorem 13.7. Let G be a finite group and V an FpG-module. Then

dim H 2.G; V / � .C C sp.G/ C hp;1.G/ p̀.G// dim V;

where C D 18:5 is the constant given in Theorem C.

Proof. Let N be a minimal normal subgroup of G. We first claim that hp;1.G=N / �
hp;1.G/. Let W be an irreducible Fp.G=N /-module which we may consider as an
F G-module. Let H D W:G. Then N is normal in H . If X is a complement to W

in H=N , then Y is a complement to W in H , where Y is the preimage of X in H .
Thus, the number of complements of W in H is at least the number of complements
of W in H=N . So dim H 1.G=N; W / � dim H 1.G; W /, whence the claim.

It suffices to prove the theorem for V irreducible. If G acts faithfully on V , this
follows from Theorem C. So we may assume that there is a minimal normal subgroup
N of G that acts trivially on V .
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By Lemma 3.8,

dim H 2.G; V / � dim H 2.G=N; V /Cdim H 2.N; V /GCdim H 1.G=N; H 1.N; V //:

Suppose that N is nonabelian. Then N is perfect, and so H 1.N; V / D 0 by
Lemma 3.9. By Lemma 3.10, H 2.N; V / D ˚H 2.Li ; V /, where N is the direct prod-
uct of the Li . Since G permutes the Li transitively, it also permutes the H 2.Li ; V /,
and so H 2.N; V /G embeds in H 2.L; V / where L Š Li . Since V is a trivial mod-
ule, dim H 2.L; V / D dim H 2.L; F / dim V D sp.N / dim V . So in this case, we
have: dim H 2.G; V / � dim H 2.G=N; V / C sp.N / dim V and the result follows by
induction.

Suppose that N is abelian. If N is a p0-group, then the last two terms in the
inequality above are 0 and the result follows. So assume that N is an elementary
abelian p-group. Set e D p̀.N /. By definition we have dim H 1.G=N; H 1.N; V // �
.hp;1.G/ � 1/e dim V . By induction, it suffices to show that dim H 2.N; V /G �
e dim V . By Lemma 3.16,

dim H 2.N; V /G � dim HomG.N; V / C dim HomG.^2.N /; V /:

If V Š N , then clearly the number of composition factors of ^2.N / isomorphic to V

is at most .e �1/=2, and so dim H 2.N; V /G � .e C1/=2.dim EndG.V// � e dim V .
If V is not isomorphic to N , then H 2.N; V /G D 0, and so dim H 2.N; V /G �
HomG.^2.N /; V / and by Lemma 3.18, dim H 2.N; V /G � .e � 1/ dim V . This
completes the proof.

Note that sp.G/ is at most twice the number of nonabelian chief factors of G.
If we only consider d -generated groups, then as noted above, hp;1 � d C 1.

Indeed, dim H 1.G; V / � .d � 1/ dim V unless V involves trivial modules. So one
has:

Corollary 13.8. Let G be a finite group with d.G/ D d and V an FpG-module.
Then dim H 2.G; V / � .C C sp.G/ C .d C 1/ p̀.G// dim V , where C D 18:5 is the
constant given in Theorem C.

Now using (1.1), we can obtain results about profinite presentations. Let h1.G/

be the maximum of hp;1.G/ over p, `.G/ the maximum of the p̀.G/ and s.G/ the
maximum of the sp.G/. The following is a refinement of the results mentioned in the
beginning of the section.

Theorem 13.9. Let G be a finite group. Then Or.G/ � d.G/CC Cs.G/Ch1.G/`.G/,
where C � 1 D 18:5 is the constant in Theorem C. In particular, if d.G/ � d , then
Or.G/ � d C C C s.G/ C .d C 1/`.G/.
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This improves Theorem 13.5 in the profinite setting since s.G/ and `.G/ are
bounded above by log2 jGj and h1.G/ � d.G/ C 1.

We mention some special cases that are a bit surprising.

Corollary 13.10. Let G be a finite group with no abelian composition factors. Then
Or.G/ � d.G/ C 19 C 2s where s is the number of chief factors of G.

Corollary 13.11. Let G be a finite group with no abelian composition factors and no
composition factors that have a nontrivial Schur multiplier. Then Or.G/ � d.G/C19.

It is not clear that the previous result is true for discrete presentations and may
suggest a strategy for proving that one does not always have r.G/ D Or.G/.
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